Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Mar Drugs ; 20(11)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36421992

ABSTRACT

The diverse therapeutic feasibility of the sea urchin-derived naphthoquinone pigment, Echinochrome A (Ech A), has been studied. Simple and noninvasive administration routes should be explored, to obtain the feasibility. Although the therapeutic potential has been proven through several preclinical studies, the biosafety of orally administered Ech A and its direct influence on intestinal cells have not been evaluated. To estimate the bioavailability of Ech A as an oral administration drug, small intestinal and colonic epithelial organoids were developed from mice and humans. The morphology and cellular composition of intestinal organoids were evaluated after Ech A treatment. Ech A treatment significantly increased the expression of LGR5 (~2.38-fold change, p = 0.009) and MUC2 (~1.85-fold change, p = 0.08). Notably, in the presence of oxidative stress, Ech A attenuated oxidative stress up to 1.8-fold (p = 0.04), with a restored gene expression of LGR5 (~4.11-fold change, p = 0.0004), as well as an increased expression of Ly6a (~3.51-fold change, p = 0.005) and CLU (~2.5-fold change, p = 0.01), markers of revival stem cells. In conclusion, Ech A is harmless to intestinal tissues; rather, it promotes the maintenance and regeneration of the intestinal epithelium, suggesting possible beneficial effects on the intestine when used as an oral medication.


Subject(s)
Intestinal Mucosa , Naphthoquinones , Humans , Mice , Animals , Naphthoquinones/pharmacology , Naphthoquinones/therapeutic use , Intestines , Colon
2.
Biomed Pharmacother ; 153: 113347, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35792394

ABSTRACT

Olfactory loss has been considered as the earliest complication for the aging process while underlying mechanisms and therapeutic strategies remain unclear. Given the correlation between microglial activation and olfactory dysfunction, here we investigated whether the immunomodulatory action of mesenchymal stem cells (MSCs) can rescue the olfactory impairment in old mice. The intranasal delivery of MSCs limited microglial activation and neuronal apoptosis in the olfactory bulb (OB), leading to improvement in olfaction. MSCs down-regulated the proportion of CD86+ microglia and prevented the maturation of cathepsin S, one of the inflammatory mediators in olfactory impairment, via the suppression of p38 MAPK signaling. Notably, old astrocytes could not prevent excessive microgliosis because the endogenous production of Galectin-1 (Gal1), one of the key microglia regulators secreted by astrocytes, was not sufficiently upregulated in the aged brain despite the presence of reactive astrogliosis. Considering that Gal1 is known as a potent paracrine factor of MSCs, we investigated whether MSC-derived Gal1 could compensate for defective astrocyte function in terms of microglial regulation. MSCs and their culture supernatant (MSC-CM) could regulate the direction of microglial differentiation by impeding the polarization towards the pro-inflammatory M1 type; notably, a selective Gal1 inhibitor OTX008 could hinder this phenomenon, indicating that Gal1 is involved in immunomodulation exerted by MSCs. Also, acute microglial activation within the OB upon LPS infusion was attenuated by MSC-CM in a Gal1-dependent manner. Our study demonstrates the therapeutic benefit of MSCs on age-related olfactory dysfunction and suggests Gal1 as a key mediator of the anti-inflammatory action of MSCs.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Olfaction Disorders , Animals , Galectin 1 , Mice , Microglia , Smell
3.
J Pineal Res ; 72(1): e12779, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34826168

ABSTRACT

The prevalence of head and neck squamous cell carcinoma (HNSCC) has continued to rise for decades. However, drug resistance to chemotherapeutics and relapse, mediated by cancer stem cells (CSCs), remains a significant impediment in clinical oncology to achieve successful treatment. Therefore, we focused on analyzing CSCs in HNSCC and demonstrated the effect of melatonin (Mel) and verteporfin (VP) on SCC-25 cells. HNSCC CSCs were enriched in the reactive oxygen species-low state and in sphere-forming cultures. Combination treatment with Mel and VP decreased HNSCC viability and increased apoptosis without causing significant damage to normal cells. Sphere-forming ability and stem cell population were reduced by co-treatment with Mel and VP, while mitochondrial ROS level was increased by the treatment. Furthermore, the expression of mitophagy markers, parkin and PINK1, was significantly decreased in the co-treated cells. Mel and VP induced mitochondrial depolarization and inhibited mitochondrial function. Parkin/TOM20 was localized near the nucleus and formed clusters of mitochondria in the cells after treatment. Moreover, Mel and VP downregulated the expression of markers involved in epithelial-mesenchymal transition and metastasis. The migration capacity of cells was significantly decreased by co-treatment with Mel and VP, accompanied by the down-regulation of MMP-2 and MMP-9 expression. Taken together, these results indicate that co-treatment with Mel and VP induces mitochondrial dysfunction, resulting in the apoptosis of CSCs. Mel and VP could thus be further investigated as potential therapies for HNSCC through their action on CSCs.


Subject(s)
Head and Neck Neoplasms , Melatonin , Cell Line, Tumor , Humans , Melatonin/pharmacology , Mitochondrial Dynamics , Neoplastic Stem Cells , Squamous Cell Carcinoma of Head and Neck , Verteporfin
4.
BMB Rep ; 54(6): 323-328, 2021 06.
Article in English | MEDLINE | ID: mdl-34078528

ABSTRACT

Periodontal diseases have been reported to have a multidirectional association with metabolic disorders. We sought to investigate the correlation between periodontitis and diabetes or fatty liver disease using HFD-fed obese mice inoculated with P. gingivalis. Body weight, alveolar bone loss, serological biochemistry, and glucose level were determined to evaluate the pathophysiology of periodontitis and diabetes. For the evaluation of fatty liver disease, hepatic nonalcoholic steatohepatitis (NASH) was assessed by scoring steatosis, inflammation, hepatocyte ballooning and the crucial signaling pathways involved in liver metabolism were analyzed. The C-reactive protein (CRP) level and NASH score in P. gingivalis-infected obese mice were significantly elevated. Particularly, the extensive lobular inflammation was observed in the liver of obese mice infected with P. gingivalis. Moreover, the expression of metabolic regulatory factors, including peroxisome proliferator-activated receptor γ (Pparγ) and the fatty acid transporter Cd36, was up-regulated in the liver of P. gingivalis-infected obese mice. However, inoculation of P. gingivalis had no significant influence on glucose homeostasis, insulin resistance, and hepatic mTOR/AMPK signaling. In conclusion, our results indicate that P. gingivalis can induce the progression of fatty liver disease in HFD-fed mice through the upregulation of CD36-PPARγ axis. [BMB Reports 2021; 54(6): 323-328].


Subject(s)
Bacteroidaceae Infections/complications , CD36 Antigens/metabolism , Inflammation/pathology , Non-alcoholic Fatty Liver Disease/pathology , Obesity/physiopathology , PPAR gamma/metabolism , Porphyromonas gingivalis/physiology , Animals , Bacteroidaceae Infections/microbiology , CD36 Antigens/genetics , Diet, High-Fat , Disease Progression , Inflammation/metabolism , Inflammation/microbiology , Mice , Mice, Inbred C57BL , Mice, Obese , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/microbiology , PPAR gamma/genetics
5.
Mol Med Rep ; 23(4)2021 04.
Article in English | MEDLINE | ID: mdl-33537808

ABSTRACT

Preeclampsia (PE) is a complication of pregnancy and is characterized by hypertension and proteinuria, threatening both the mother and the fetus. However, the etiology of PE has not yet been fully understood. Since the imbalance of steroid hormones is associated with the pathogenesis of PE, investigating steroidogenic mechanisms under various PE conditions is essential to understand the entire spectrum of pregnancy disorders. Therefore, the current study established three PE in vitro and in vivo models, and compared the levels of steroid hormones and steroidogenic enzymes within them. In cellular PE models induced by hypoxia, N­nitro­L­arginine methyl ester hydrocholride (L­NAME) and catechol­o­methyltransferase inhibitor, the levels of steroid hormones, including pregnenolone (P5), progesterone (P4), dehydroepiandrosterone (DHEA) and testosterone tended to decrease during steroidogenesis. Injection of L­NAME in pregnant rats led to a reduction in the levels of estradiol and P4 through regulation of cholesterol side­chain cleavage enzyme (CYP11A1) and 3ß­hydroxysteroid dehydrogenase/δ5 4­isomerase type 1 (HSD3B1), whereas rats treated with COMT­I exhibited elevated levels of P5 and DHEA by regulation of the CYP11A1 and aromatase cytochrome P450 (CYP19A1) in the placenta and plasma. The reduced uterine perfusion pressure operation decreased CYP11A1 and increased CYP19A1 expression in placental tissues, whereas steroid hormone levels were not altered. In conclusion, the results of the present study suggest that the induction of PE conditions dysregulates the steroid hormones via regulation of steroidogenic enzymes, depending on specific PE symptoms. These findings can contribute to the development of novel diagnostic and therapeutic modalities for PE, by monitoring and supplying appropriate levels of steroid hormones.


Subject(s)
Hormones/metabolism , Models, Biological , Placenta/metabolism , Pre-Eclampsia/metabolism , Steroids/metabolism , Cell Line, Tumor , Female , Humans , Pre-Eclampsia/pathology , Pregnancy
6.
Biomedicines ; 8(12)2020 Dec 02.
Article in English | MEDLINE | ID: mdl-33276479

ABSTRACT

Mesenchymal stem cells (MSCs) have been spotlighted in the field of cell therapies as a promising tool for the treatment of intractable inflammatory diseases. However, their therapeutic potency still shows a gap between preclinical and clinical settings, and distinctive characteristics of specific tissue-derived MSCs and definitive ways to maximize their beneficial functions have not been fully elucidated yet. We previously identified the unique MSCs population from human palatine tonsil (TMSCs) and revealed their superior properties in proliferation and ROS regulation. Based on these findings, we explored further characteristics of TMSCs particularly focused on immunomodulatory function. We found the merit of TMSCs as a therapeutic agent that retains favorable MSCs properties until relatively late passages and revealed that pre-treatment of TNF-α can enhance the immunomodulatory abilities of TMSCs through the upregulation of the PTGS2/PGE2 axis. TMSCs primed with TNF-α effectively restrained the proliferation and differentiation of T lymphocytes and macrophages in vitro, and more interestingly, these TNF-α-licensed TMSCs exhibited significant prophylactic and therapeutic efficacy in a murine model of autoimmune-mediated acute colitis via clinical and histopathological assessment compared to unprimed naïve TMSCs. These findings provide novel insight into the optimization and standardization of MSCs-based anti-inflammatory therapies, especially targeting inflammatory bowel disease (IBD).

7.
Antioxidants (Basel) ; 9(11)2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33238520

ABSTRACT

The immunoregulatory abilities of mesenchymal stem cells (MSCs) have been investigated in various autoimmune and allergic diseases. However, the therapeutic benefits observed in preclinical settings have not been reproducible in clinical trials. This discrepancy is due to insufficient efficacy of MSCs in harsh microenvironments, as well as batch-dependent variability in potency. Therefore, to achieve more beneficial and uniform outcomes, novel strategies are required to potentiate the therapeutic effect of MSCs. One of simple strategies to augment cellular function is genetic manipulation. Several studies showed that transduction of antioxidant enzyme into cells can increase anti-inflammatory effects. Therefore, we evaluated the immunoregulatory abilities of MSCs introduced with extracellular superoxide dismutase 3 (SOD3) in the present study. SOD3-overexpressed MSCs (SOD3-MSCs) reduced the symptoms of murine model of atopic dermatitis (AD)-like inflammation, as well as the differentiation and activation of various immune cells involved in AD progression. Interestingly, extracellular vesicles (EVs) isolated from SOD3-MSCs delivered SOD3 protein. EVs carrying SOD3 also exerted improved therapeutic efficacy, as observed in their parent cells. These results suggest that MSCs transduced with SOD3, an antioxidant enzyme, as well as EVs isolated from modified cells, might be developed as a promising cell-based therapeutics for inflammatory disorders.

8.
Int J Mol Sci ; 21(12)2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32575639

ABSTRACT

Adult stem cells have been developed as therapeutics for tissue regeneration and immune regulation due to their self-renewing, differentiating, and paracrine functions. Recently, a variety of adult stem cells from the oral cavity have been discovered, and these dental stem cells mostly exhibit the characteristics of mesenchymal stem cells (MSCs). Dental MSCs can be applied for the replacement of dental and oral tissues against various tissue-damaging conditions including dental caries, periodontitis, and oral cancers, as well as for systemic regulation of excessive inflammation in immune disorders, such as autoimmune diseases and hypersensitivity. Therefore, in this review, we summarized and updated the types of dental stem cells and their functions to exert therapeutic efficacy against diseases.


Subject(s)
Adult Stem Cells/cytology , Mouth Diseases/therapy , Mouth/cytology , Adult Stem Cells/transplantation , Dental Caries , Humans , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology
9.
BMB Rep ; 53(6): 329-334, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32475381

ABSTRACT

Inflammasomes are cytosolic, multiprotein complexes that act at the frontline of the immune responses by recognizing pathogen- or danger-associated molecular patterns or abnormal host molecules. Mesenchymal stem cells (MSCs) have been reported to possess multipotency to differentiate into various cell types and immunoregulatory effects. In this study, we investigated the expression and functional regulation of NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome in human umbilical cord blood-derived MSCs (hUCB-MSCs). hUCB-MSCs expressed inflammasome components that are necessary for its complex assembly. Interestingly, NLRP3 inflammasome activation suppressed the differentiation of hUCB-MSCs into osteoblasts, which was restored when the expression of adaptor proteins for inflammasome assembly was inhibited. Moreover, the suppressive effects of MSCs on T cell responses and the macrophage activation were augmented in response to NLRP3 activation. In vivo studies using colitic mice revealed that the protective abilities of hUCB-MSCs increased after NLRP3 stimulation. In conclusion, our findings suggest that the NLRP3 inflammasome components are expressed in hUCB-MSCs and its activation can regulate the differentiation capability and the immunomodulatory effects of hUCB-MSCs. [BMB Reports 2020; 53(6): 329-334].


Subject(s)
Colitis/immunology , Disease Models, Animal , Inflammasomes/immunology , Mesenchymal Stem Cells/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Animals , Colitis/chemically induced , Dextran Sulfate , Humans , Immunomodulation/immunology , Mice
10.
Cells ; 9(3)2020 03 06.
Article in English | MEDLINE | ID: mdl-32155780

ABSTRACT

Mesenchymal stromal cells (MSCs) from various sources exhibit different potential for stemness and therapeutic abilities. Recently, we reported a unique MSCs from human palatine tonsil (TMSCs) and their superior proliferation capacity compared to MSCs from other sources. However, unique characteristics of each MSC are not yet precisely elucidated. We investigated the role of stanniocalcin-1 (STC1), an anti-oxidative hormone, in the functions of TMSCs. We found that STC1 was highly expressed in TMSC compared with MSCs from bone marrow or adipose tissue. The proliferation, senescence and differentiation of TMSCs were assessed after the inhibition of STC1 expression. STC1 inhibition resulted in a significant decrease in the proliferation of TMSCs and did not affect the differentiation potential. To reveal the anti-oxidative ability of STC1 in TMSCs themselves or against other cell types, the generation of mitochondrial reactive oxygen species (ROS) in TMSC or ROS-mediated production of interleukin (IL)-1ß from macrophage-like cells were detected. Interestingly, the basal level of ROS generation in TMSCs was significantly elevated after STC1 inhibition. Moreover, down-regulation of STC1 impaired the inhibitory effect of TMSCs on IL-1ß production in macrophages. Taken together, these findings indicate that STC1 is highly expressed in TMSCs and plays a critical role in proliferating and ROS-regulatory abilities.


Subject(s)
Glycoproteins/metabolism , Mesenchymal Stem Cells/metabolism , Palatine Tonsil/metabolism , Cell Proliferation , Humans , Palatine Tonsil/cytology , Reactive Oxygen Species , Transfection
11.
Mar Drugs ; 17(11)2019 Oct 31.
Article in English | MEDLINE | ID: mdl-31683521

ABSTRACT

Echinochrome A (Ech A), a natural pigment extracted from sea urchins, is the active ingredient of a marine-derived pharmaceutical called 'histochrome'. Since it exhibits several biological activities including anti-oxidative and anti-inflammatory effects, it has been applied to the management of cardiac injury and ocular degenerative disorders in Russia and its protective role has been studied for other pathologic conditions. In the present study, we sought to investigate the therapeutic potential of Ech A for inflammatory bowel disease (IBD) using a murine model of experimental colitis. We found that intravenous injection of Ech A significantly prevented body weight loss and subsequent lethality in colitis-induced mice. Interestingly, T cell proliferation was significantly inhibited upon Ech A treatment in vitro. During the helper T (Th) cell differentiation process, Ech A stimulated the generation regulatory T (Treg) cells that modulate the inflammatory response and immune homeostasis. Moreover, Ech A treatment suppressed the in vitro activation of pro-inflammatory M1 type macrophages, while inducing the production of M2 type macrophages that promote the resolution of inflammation and initiate tissue repair. Based on these results, we suggest that Ech A could provide a beneficial impact on IBD by correcting the imbalance in the intestinal immune system.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Colitis/drug therapy , Naphthoquinones/pharmacology , Naphthoquinones/pharmacokinetics , Animals , Colitis/chemically induced , Cytokines/metabolism , Humans , Inflammation , Leukocytes, Mononuclear , Macrophages/drug effects , Mice
12.
Lab Anim Res ; 35: 26, 2019.
Article in English | MEDLINE | ID: mdl-32257913

ABSTRACT

Emerging evidences have reported that periodontitis can be a risk factor for the pathogenesis of various systemic diseases. Porphyromonas gingivalis (Pg), one of the crucial pathogens in chronic periodontitis, has been spotlighted as a potential cause for the promotion and acceleration of periodontitis-associated systemic disorders. To investigate the association between Pg and intestinal disease or homeostasis, we treated Pg-derived lipopolysaccharide (LPS) in murine colitis model or intestinal organoid, respectively. Pg-derived LPS (Pg LPS) was administrated into chemically induced murine colitis model and disease symptoms were monitored compared with the infusion of LPS derived from E. coli (Ec LPS). Organoids isolated and cultured from mouse small intestine were treated with Pg or Ec LPS and further analyzed for the generation and composition of organoids. In vivo observations demonstrated that both Pg and Ec LPS exerted slight protective effects against murine colitis. Pg LPS did not affect the generation and growth of intestinal epithelial organoids. Among subtypes of epithelial cells, markers for stem cells, goblet cells or Paneth cells were changed in response to Pg LPS. Taken together, these results indicate that Pg LPS leads to partial improvement in colitis and that its treatment does not significantly affect the self-organization of intestinal organoids but may regulate the epithelial composition.

13.
Mol Reprod Dev ; 86(1): 109-117, 2019 01.
Article in English | MEDLINE | ID: mdl-30411422

ABSTRACT

Many steroid hormones such as estrogen (E2) bind to their receptors for the regulation of biological processes. Pregnenolone (P5) is the precursor form of almost all steroid hormones and is often used to treat skin disorders and neurological complications. However, the mechanism and physiological function of P5 in reproductive organs are not well established. In this study, we investigated the effects of P5 on activation and expression of E2 receptor (ER) in the uteri and ovaries. To study the mechanism of P5 directly, Ishikawa cells were transfected with E2 response element (ERE)-luciferase plasmid and isoforms of ER. ERE-luciferase activity induced by P5 was similar to that induced by E2, and P5 showed high activity for ERß without any relevance to P5-metabolizing hormones such as progesterone (P4) and E2. In an animal study, immature female rats treated with P5 showed upregulation of ERα and downregulation of ERß in the uteri, which is the main organ expressing ERα. In ERß-expressing organ ovaries, estrogen receptor 1, estrogen receptor 2, and P4 receptor were all downregulated by P5 and E2. Also, a decrease of ovarian cell proliferation and viability was observed in response to P5 relative to the control, suggesting that P5 may be a candidate for antiproliferative hormone of ovarian cancer. These findings suggest that P5 stimulates ERE promoter by ERß-mediated signaling in the uteri and ovaries. Activation of ERß by P5 may help in understanding the mechanism of ER-related female reproductive diseases such as endometriosis and ovarian cancer.


Subject(s)
Endometriosis/drug therapy , Estrogen Receptor beta/biosynthesis , Gene Expression Regulation, Neoplastic/drug effects , Hormone Replacement Therapy , Neoplasm Proteins/biosynthesis , Ovarian Neoplasms/drug therapy , Pregnenolone/therapeutic use , Animals , Endometriosis/metabolism , Endometriosis/pathology , Female , Hep G2 Cells , Humans , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Rats , Rats, Sprague-Dawley , Response Elements
14.
Int J Mol Med ; 41(5): 2943-2951, 2018 May.
Article in English | MEDLINE | ID: mdl-29436602

ABSTRACT

Estrogen and progesterone are the main pregnancy hormones produced by the placenta. It is well understood that estrogen stimulates angiogenesis in the uterus during the reproductive cycle. Although the estrogen and progesterone signaling pathways are assumed to be associated with placental vascularization and preeclampsia, expression of estrogen receptors (ESRs) and progesterone receptor (PGR) in the placenta have not been well studied. The present study examined the expression patterns of steroid hormone receptors in placentas. Human placenta samples were collected and divided into normal and preeclampsia groups. Results revealed that expression levels of ESR1 were reduced, whereas ESR2 and PGR were elevated in preeclamptic placentas. To generate an in vitro preeclampsia environment, human placenta­derived BeWo cells were incubated under hypoxic conditions, or treated with catechol­O­methyl transferase inhibitor (COMT­in) or L­NG­nitroarginine methyl ester (L­NAME). Expression levels of ESR1, ESR2 and PGR in hypoxic cells demonstrated similar regulation as those in placentas from women with preeclampsia. Although COMT­in and L­NAME did not significantly regulate the expression levels of the receptors, COMT­in translocated ESR2 and PGR from the nucleus to the cytoplasm, indicating that these receptors were inactivated. These results suggested that ESRs and PGR are associated with symptoms of preeclampsia in the placenta. The expression of ESR1 was reduced in preeclamptic placenta and hypoxic BeWo cells. In addition, the activation of ESR2 and PGR was blocked in placenta cells subjected to COMT­in treatment. The reduced ESR1 expression and inactivation of ESR2 and PGR proteins may affect the physiological complications of preeclampsia in the placenta.


Subject(s)
Estrogen Receptor alpha/genetics , Estrogen Receptor beta/genetics , Gene Expression Regulation , Placenta/pathology , Pre-Eclampsia/genetics , Receptors, Progesterone/genetics , Cell Line , Estrogen Receptor alpha/analysis , Estrogen Receptor beta/analysis , Female , Humans , Placenta/metabolism , Pre-Eclampsia/pathology , Pregnancy , Receptors, Progesterone/analysis
15.
Mol Med Rep ; 17(2): 2681-2688, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29207177

ABSTRACT

Preeclampsia (PE) is a pregnancy­specific hypertensive syndrome that results in substantial maternal and fetal morbidity and mortality. The exact cause of PE has not been completely elucidate, although abnormal formation of the placenta has been considered. The placenta connects the developing fetus to the uterine wall, producing a large quantity of steroid hormones to maintain pregnancy. Although steroid hormones, particularly progesterone (P4) and estrogen (E2), in the serum of women with PE have been studied, steroidogenesis in the placenta has not well been established. The present study compared the concentrations of steroid hormones, including pregnenolone (PG), P4, dehydroepiandrosterone (DHEA), testosterone (T) and E2, in the serum and placenta of women with PE. PG, P4, DHEA and E2 concentrations tended to be decreased in PE serum and placentas, and the results were statistically significant for P4 and E2 in the serum. Quantification of genes associated with steroidogenesis in the placenta was performed, and the expression of the P4­ and E2­synthesizing enzymes testosterone 17­ß­dehydrogenase 3 and 3 ß­hydroxysteroid dehydrogenase/δ5 4­isomerase type 1 was reduced. Notably, aromatase, an enzyme required for the production of E2, was upregulated in the PE placenta, suggesting that steroidogenic enzymes may be dynamically regulated and may affect the symptoms of PE. In conclusion, the results of the present study suggested that the levels of steroid hormones, including P4 and E2, in the serum and placenta of women with PE are downregulated, which may be mediated by the regulation of steroidogenic enzyme expression in the PE placenta.


Subject(s)
Hormones/metabolism , Placenta/metabolism , Pre-Eclampsia/metabolism , Steroids/metabolism , Adult , Biomarkers , Female , Gene Expression Regulation, Enzymologic , Hormones/blood , Humans , Pre-Eclampsia/blood , Pre-Eclampsia/genetics , Pregnancy , Steroids/blood
16.
Toxicol Res ; 33(1): 49-54, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28133513

ABSTRACT

Vitamin D3 is a fat-soluble secosteroid responsible for enhancing intestinal absorption of calcium, iron, and other materials. Vitamin D3 deficiency, therefore, can cause health problems such as metabolic diseases, and bone disorder. Female sex hormones including estrogen and progesterone are biosynthesized mainly in the granulosa cells of ovary. In this study, we isolated granulosa cells from porcine ovary and cultured for the experiments. In order to examine the effect of vitamin D3 on the ovarian granulosa cells, the mRNA and protein levels of genes were analyzed by real-time PCR and Western blot assay. The production of estrogen from the granulosa cells was also measured by the ELISA assay. Genes associated with follicle growth were not significantly altered by vitamin D3. However, it increases expression of genes involved in the estrogen-biosynthesis. Further, estrogen concentrations in porcine granulosa cell-cultured media increased in response to vitamin D3. These results showed that vitamin D3 is a powerful regulator of sex steroid hormone production in porcine granulosa cells, suggesting that vitamin D deficiency may result in inappropriate sexual development of industrial animals and eventually economic loss.

SELECTION OF CITATIONS
SEARCH DETAIL
...