Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell ; 34(3): 1020-1037, 2022 03 04.
Article in English | MEDLINE | ID: mdl-34931682

ABSTRACT

Vernalization, a long-term cold-mediated acquisition of flowering competence, is critically regulated by VERNALIZATION INSENSITIVE 3 (VIN3), a gene induced by vernalization in Arabidopsis. Although the function of VIN3 has been extensively studied, how VIN3 expression itself is upregulated by long-term cold is not well understood. In this study, we identified a vernalization-responsive cis-element in the VIN3 promoter, VREVIN3, composed of a G-box and an evening element (EE). Mutations in either the G-box or the EE prevented VIN3 expression from being fully induced upon vernalization, leading to defects in the vernalization response. We determined that the core clock proteins CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) and LATE-ELONGATED HYPOCOTYL (LHY) associate with the EE of VREVIN3, both in vitro and in vivo. In a cca1 lhy double mutant background harboring a functional FRIGIDA allele, long-term cold-mediated VIN3 induction and acceleration of flowering were impaired, especially under mild cold conditions such as at 12°C. During prolonged cold exposure, oscillations of CCA1/LHY transcripts were altered, while CCA1 abundance increased at dusk, coinciding with the diurnal peak of VIN3 transcripts. We propose that modulation of the clock proteins CCA1 and LHY participates in the systems involved in sensing long-term cold for the activation of VIN3 transcription.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Circadian Rhythm/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant/genetics , Hypocotyl/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Sci Rep ; 11(1): 2392, 2021 01 27.
Article in English | MEDLINE | ID: mdl-33504832

ABSTRACT

Preterm birth (PTB), defined as birth at less than 37 weeks of gestation, is a major determinant of neonatal mortality and morbidity. Early diagnosis of PTB risk followed by protective interventions are essential to reduce adverse neonatal outcomes. However, due to the redundant nature of the clinical conditions with other diseases, PTB-associated clinical parameters are poor predictors of PTB. To identify molecular signatures predictive of PTB with high accuracy, we performed mRNA sequencing analysis of PTB patients and full-term birth (FTB) controls in Korean population and identified differentially expressed genes (DEGs) as well as cellular pathways represented by the DEGs between PTB and FTB. By integrating the gene expression profiles of different ethnic groups from previous studies, we identified the core T-cell activation pathway associated with PTB, which was shared among all previous datasets, and selected three representative DEGs (CYLD, TFRC, and RIPK2) from the core pathway as mRNA signatures predictive of PTB. We confirmed the dysregulation of the candidate predictors and the core T-cell activation pathway in an independent cohort. Our results suggest that CYLD, TFRC, and RIPK2 are potentially reliable predictors for PTB.


Subject(s)
Gene Expression Profiling , Lymphocyte Activation/genetics , Premature Birth/etiology , T-Lymphocytes/metabolism , Transcriptome , Adult , Cohort Studies , Computational Biology/methods , Disease Susceptibility , Female , Gene Ontology , Gene Regulatory Networks , Humans , Infant, Newborn , Pregnancy , Risk Factors , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...