Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
J Ginseng Res ; 48(2): 140-148, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38465212

ABSTRACT

Synthetic biology approaches offer potential for large-scale and sustainable production of natural products with bioactive potency, including ginsenosides, providing a means to produce novel compounds with enhanced therapeutic properties. Ginseng, known for its non-toxic and potent qualities in traditional medicine, has been used for various medical needs. Ginseng has shown promise for its antioxidant and neuroprotective properties, and it has been used as a potential agent to boost immunity against various infections when used together with other drugs and vaccines. Given the increasing demand for ginsenosides and the challenges associated with traditional extraction methods, synthetic biology holds promise in the development of therapeutics. In this review, we discuss recent developments in microorganism producer engineering and ginsenoside production in microorganisms using synthetic biology approaches.

2.
Heliyon ; 9(8): e18920, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37636350

ABSTRACT

Background: Cenobamate is an antiseizure medication used to treat partial-onset (focal) seizures. It is a molecule with one chiral center and a unique dual mechanism of action: enhancement of fast and slow inactivation of sodium channels with preferential inhibition of the persistent current and positive allosteric modulation of GABAA receptor-mediated ion channels. Aims/Methods: Anticonvulsant effects of cenobamate (YKP3089; R-enantiomer), YKP3090 (S-enantiomer), and YKP1983 (racemate) were evaluated in chemically and electrically induced focal and generalized seizure models in rodents. The Genetic Absence Epilepsy Rat from Strasbourg (GAERS) model examined the effect of cenobamate on spike-wave seizures. Motor coordination was assessed with rotarod tests and minimal motor impairment exams. Results: Early in development, cenobamate was found to have activity in focal and generalized seizure models in animals and was selected for continued development. Cenobamate prevented seizures in a dose-dependent manner, prevented seizure spread, and increased seizure threshold without potentiating seizure initiation or the development of tolerance to its anticonvulsant effects. In contrast, YKP3090 and YKP1983 were only effective against generalized tonic-clonic seizures. Cenobamate also protected mice from 6 Hz psychomotor-induced seizures. Cenobamate showed significant dose-dependent reductions in the number and cumulative duration of spike-and-wave discharges in the GAERS model. Discussion: Cenobamate showed efficacy or efficacy signals in all animal models of epilepsy tested with a favorable risk-versus-benefit ratio, supporting its clinical use in the treatment of partial-onset (focal) seizures in adults and warranting further clinical research in generalized seizures and absence seizures.

3.
Can J Physiol Pharmacol ; 101(6): 294-303, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36999637

ABSTRACT

Ascorbic acid has been suggested to regulate obesity in obese male rodents. Moreover, increased adipocyte size has been associated with metabolic disease. Thus, we investigated the effects of ascorbic acid on adipocyte hypertrophy and insulin resistance in high-fat diet (HFD)-induced obese ovariectomized (OVX) C57BL/6J mice, an animal model of obese postmenopausal women. Administration of ascorbic acid (5% w/w in diet for 18 weeks) reduced the size of visceral adipocytes without changes in body weight and adipose tissue mass in HFD-fed obese OVX mice compared with obese OVX mice that did not receive ascorbic acid. Ascorbic acid inhibited adipose tissue inflammation, as shown by the decreased number of crown-like structures and CD68-positive macrophages in visceral adipose tissues. Ascorbic acid-treated mice exhibited improved hyperglycemia, hyperinsulinemia, and glucose and insulin tolerance compared with nontreated obese mice. Pancreatic islet size and insulin-positive ß-cell area in ascorbic acid-treated obese OVX mice decreased to the levels observed in low-fat diet-fed lean mice. Ascorbic acid also suppressed pancreatic triglyceride accumulation in obese mice. These results suggest that ascorbic acid may reduce insulin resistance and pancreatic steatosis partly by suppressing visceral adipocyte hypertrophy and adipose tissue inflammation in obese OVX mice.


Subject(s)
Insulin Resistance , Pancreatic Diseases , Male , Female , Animals , Mice , Mice, Obese , Ascorbic Acid/pharmacology , Ascorbic Acid/therapeutic use , Ascorbic Acid/metabolism , Mice, Inbred C57BL , Obesity/complications , Obesity/drug therapy , Obesity/metabolism , Adipocytes/metabolism , Inflammation/metabolism , Diet, High-Fat/adverse effects , Insulin/metabolism , Pancreatic Diseases/metabolism , Hypertrophy/metabolism
4.
Nano Lett ; 23(11): 5391-5398, 2023 06 14.
Article in English | MEDLINE | ID: mdl-36971404

ABSTRACT

Since thermometry of human skin is critical information that provides important aspects of human health and physiology, accurate and continuous temperature measurement is required for the observation of physical abnormalities. However, conventional thermometers are uncomfortable because of their bulky and heavy features. In this work, we fabricated a thin, stretchable array-type temperature sensor using graphene-based materials. Furthermore, we controlled the degree of graphene oxide reduction and enhanced the temperature sensitivity. The sensor exhibited an excellent sensitivity of 2.085% °C-1. The overall device was designed in a wavy meander shape to provide stretchability for the device so that precise detection of skin temperature could be performed. Furthermore, polyimide film was coated to secure the chemical and mechanical stabilities of the device. The array-type sensor enabled spatial heat mapping with high resolution. Finally, we introduced some practical applications of skin temperature sensing, suggesting the possibility of skin thermography and healthcare monitoring.


Subject(s)
Graphite , Skin Temperature , Humans , Temperature , Thermography
5.
Adv Sci (Weinh) ; 10(12): e2206355, 2023 04.
Article in English | MEDLINE | ID: mdl-36814343

ABSTRACT

In searching for unique and unexplored 2D materials, the authors try to investigate for the very first time the use of delaminated V-MXene coupled with precious metal ruthenium (Ru) through atomic layer deposition (ALD) for various contact and noncontact mode of real-time temperature sensing applications at the human-machine interface. The novel delaminated V-MXene (DM-V2 CTx ) engineered ruthenium-ALD (Ru-ALD) temperature sensor demonstrates a competitive sensing performance of 1.11% °C-1 as of only V-MXene of 0.42% °C-1 . A nearly threefold increase in sensing and reversibility performance linked to the highly ordered few-layered V-MXene and selective, well-controlled Ru atomic doping by ALD for the successful formation of Ru@DM-V2 CTX heterostructure. The advanced heterostructure formation, the mechanism, and the role of Ru have been comprehensively investigated by ultra-high-resolution transmission/scanning transmission electron microscopies coupled with next-generation spherical aberration correction technology and fast, accurate elemental mapping quantifications, also by ultraviolet photoelectron spectroscopy. To the knowledge, this work is the first to use the novel, optimally processed V-MXene over conventionally used Ti-MXene and its surface-internal structure engineering by Ru-ALD process-based temperature-sensing devices function and operational demonstrations. The current work could potentially motivate the development of multifunctional, future, next-generation, safe, personal healthcare electronic devices by the industrially scalable ALD technique.


Subject(s)
Ruthenium , Humans , Electronics , Engineering , Thermosensing
6.
Nanoscale Adv ; 5(3): 640-649, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36756507

ABSTRACT

Extracellular vesicles (EVs) have emerged as vehicles that mediate diverse cell-cell communication. However, in-depth understanding of these vesicles is hampered by a lack of a reliable isolation method to separate different types of EVs with high levels of integrity and purity. Here, we developed a nanoporous and ultra-thin membrane structure (NUTS) that warrants the size-based isolation of EVs without cake formation, minimizing the sample loss during the filtration process. By utilizing the micro-electro-mechanical systems (MEMS) technique, we could also control the pore size in nanoscale. We validated the performance of this membrane to separate EVs according to their size range.

7.
Biosensors (Basel) ; 12(11)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36354461

ABSTRACT

The interest in biodegradable pressure sensors in the biomedical field is growing because of their temporary existence in wearable and implantable applications without any biocompatibility issues. In contrast to the limited sensing performance and biocompatibility of initially developed biodegradable pressure sensors, device performances and functionalities have drastically improved owing to the recent developments in micro-/nano-technologies including device structures and materials. Thus, there is greater possibility of their use in diagnosis and healthcare applications. This review article summarizes the recent advances in micro-/nano-structured biodegradable pressure sensor devices. In particular, we focus on the considerable improvement in performance and functionality at the device-level that has been achieved by adapting the geometrical design parameters in the micro- and nano-meter range. First, the material choices and sensing mechanisms available for fabricating micro-/nano-structured biodegradable pressure sensor devices are discussed. Then, this is followed by a historical development in the biodegradable pressure sensors. In particular, we highlight not only the fabrication methods and performances of the sensor device, but also their biocompatibility. Finally, we intoduce the recent examples of the micro/nano-structured biodegradable pressure sensor for biomedical applications.


Subject(s)
Biosensing Techniques , Prostheses and Implants
8.
Sensors (Basel) ; 22(9)2022 May 07.
Article in English | MEDLINE | ID: mdl-35591258

ABSTRACT

Centimeter level augmentation system (CLAS) of the quasi-zenith satellite system (QZSS) is the first precise point positioning-real time kinematic (PPP-RTK) augmentation system of the global navigation satellite system (GNSS), which is currently providing services for Japan. CLAS broadcasts the state-space representation of correction messages along with integrity messages regarding satellite faults and the quality index of each correction. In other GNSS augmentation systems, such as the space-based augmentation system (SBAS) of GNSS, the quality indices of correction messages are used to generate fault-free protection levels that represent a position bound containing a true user position with a probability of missed detections. Although the protection level equations are well defined for the SBAS, a protection level equation for the CLAS PPP-RTK service has not been rigorously discussed in the literature. This paper proposes a fault-free protection level equation for the PPP-RTK methods that considers the probability of correct integer ambiguity fixes in the GNSS carrier phase measurements as well as the CLAS correction quality messages. The computed protection levels with position errors were experimentally compared by processing the GNSS measurements from the GNSS Earth Observation Network (GEONET) stations in Japan and the L6 messages from the CLAS broadcast using the virtual reference station-real time kinematic (VRS-RTK) techniques. Our results, based on the GEONET dataset spanning 7 days, showed that the computed protection levels using the proposed equations were larger than the position errors for all epochs. In the dataset, the RMS errors of the CLAS VRS-RTK position were 4.6 and 14 cm in the horizontal and vertical directions, respectively, whereas the horizontal protection levels ranged from 25 cm to 2.3 m and the vertical protection levels ranged from 50 cm to 5.2 m based on fault-free integrity risk of 10-7.

9.
Diabetes Metab J ; 46(6): 890-900, 2022 11.
Article in English | MEDLINE | ID: mdl-35483675

ABSTRACT

BACKGROUND: We evaluated whether postpartum muscle mass affects the risk of type 2 diabetes mellitus (T2DM) in Korean women with gestational diabetes mellitus (GDM). METHODS: A total of 305 women with GDM (mean age, 34.9 years) was prospectively evaluated for incident prediabetes and T2DM from 2 months after delivery and annually thereafter. Appendicular skeletal muscle mass (ASM) was assessed with bioelectrical impedance analysis at the initial postpartum visit, and ASM, either divided by body mass index (BMI) or squared height, and the absolute ASM were used as muscle mass indices. The risk of incident prediabetes and T2DM was assessed according to tertiles of these indices using a logistic regression model. RESULTS: After a mean follow-up duration of 3.3 years, the highest ASM/BMI tertile group had a 61% lower risk of incident prediabetes and T2DM compared to the lowest tertile group, and this remained significant after we adjusted for covariates (adjusted odds ratio, 0.37; 95% confidence interval [CI], 0.15 to 0.92; P=0.032). Equivalent findings were observed in normal weight women (BMI <23 kg/m2), but this association was not significant for overweight women (BMI ≥23 kg/m2). Absolute ASM or ASM/height2 was not associated with the risk of postpartum T2DM. CONCLUSION: A higher muscle mass, as defined by the ASM/BMI index, was associated with a lower risk of postpartum prediabetes and T2DM in Korean women with GDM.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetes, Gestational , Prediabetic State , Pregnancy , Female , Humans , Adult , Diabetes, Gestational/epidemiology , Diabetes Mellitus, Type 2/epidemiology , Prediabetic State/epidemiology , Risk Factors , Muscles
10.
Sci Total Environ ; 815: 152846, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-34995609

ABSTRACT

1,2,3-benzotriazole (BT) is used in large amounts around the world and is one of the substances derived from household chemicals that are of concern for risk when discharged to aquatic environments. Therefore, several studies have been conducted on the aquatic toxicity effects of BT, but the chronic impact assessment studies to evaluate the developmental effects on the early-life stage of fish are insufficient. In this study, the acute toxicity test and subchronic toxicity test (fish, early-life stage toxicity test, ELS test) using embryos of Japanese medaka (Oryzias latipes) were performed to evaluate the acute toxicity, developmental toxicity, growth (indicated by total length and weight at the end of the test), and histopathological effect of BT. In the short-term toxicity test on embryo and sac-fry stage, toxicity value was calculated to be 41 mg/L (NOEC). Based on this value, the exposure concentration of the ELS test was determined as 0.04, 0.4, 4 and 40 mg/L, and total exposure duration was 42 days. At the highest concentration group (40 mg/L), failure of swim bladder inflation and decrease of survival and size (total length and weight) were observed. Moreover, in the histopathological analysis, abnormal findings were detected in swim bladders from the 40 mg/L group such as inflammation and tumor changes. On the other hands, condition index (weight-length relationships, CI) was statistically significantly lower in all exposed groups compared to the control group. NOEC for the survival of BT was calculated to be 4 mg/L. LOEC for CI was 0.04 mg/L, which means BT inhibited weight gain relative to its length on larvae of medaka.


Subject(s)
Oryzias , Water Pollutants, Chemical , Animals , Embryo, Nonmammalian , Toxicity Tests, Acute , Triazoles , Water Pollutants, Chemical/toxicity
11.
Article in English | MEDLINE | ID: mdl-34718189

ABSTRACT

Emerging contaminants (EC) such as benzotriazole are being released into the environment in various ways, therefore it is necessary to understand how organisms are affected by EC. In this study, we exposed medaka (Oryzias latipes) and zebrafish (Danio rerio) during their embryonic period (1 day after hatching) to benzotriazole to investigate its effects on oxidative stress (ROS, GSH, GST, SOD, CAT and MDA) and changes in gene expression patterns. In both medaka and zebrafish, the influence of oxidative stress was confirmed through an increased MDA level and changes in the ROS and GSH levels. Antioxidant enzymes such as GST, CAT, and SOD were affected by benzotriazole; however, medaka and zebrafish showed different patterns in the effects by benzotriazole. Results of oxidative stress genes expression showed that medaka had either no influence or had a decrease in the gene expression profile, whereas zebrafish had a statistically significant increase in the expression of some genes. The cyp1a gene expression was increased in both species. However, vtg gene expression was increased only in zebrafish but decreased in medaka, indicating no estrogenic effects in medaka. Apoptosis genes showed changes in expression in both the species but was these changes were not dose-dependent. However, zebrafish caspase-9 gene expression was increased in all of the exposed groups, suggesting the effects on the intrinsic pathway associated with caspase-9. In conclusion, the results indicate that the toxic effects of benzotriazole differ at various levels in the two small fish medaka and zebrafish embryos.


Subject(s)
Embryo, Nonmammalian/drug effects , Oryzias/embryology , Oxidative Stress/drug effects , Triazoles/toxicity , Zebrafish/embryology , Animals , Biomarkers/metabolism , Caspase 9/genetics , Caspase 9/metabolism , Gene Expression Regulation, Developmental/drug effects , Toxicity Tests , Vitellogenins/genetics , Vitellogenins/metabolism , Water Pollutants, Chemical/toxicity
13.
Sci Rep ; 11(1): 20448, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34650185

ABSTRACT

Ultrasonography (US) is the primary diagnostic tool for thyroid nodules, while the accuracy is operator-dependent. It is widely used not only by radiologists but also by physicians with different levels of experience. The aim of this study was to investigate whether US with computer-aided diagnosis (CAD) has assisting roles to physicians in the diagnosis of thyroid nodules. 451 thyroid nodules evaluated by fine-needle aspiration cytology following surgery were included. 300 (66.5%) of them were diagnosed as malignancy. Physicians with US experience less than 1 year (inexperienced, n = 10), or more than 5 years (experienced, n = 3) reviewed the US images of thyroid nodules with or without CAD assistance. The diagnostic performance of CAD was comparable to that of the experienced group, and better than those of the inexperienced group. The AUC of the CAD for conventional PTC was higher than that for FTC and follicular variant PTC (0.925 vs. 0.499), independent of tumor size. CAD assistance significantly improved diagnostic performance in the inexperienced group, but not in the experienced groups. In conclusion, the CAD system showed good performance in the diagnosis of conventional PTC. CAD assistance improved the diagnostic performance of less experienced physicians in US, especially in diagnosis of conventional PTC.


Subject(s)
Diagnosis, Computer-Assisted , Thyroid Nodule/diagnostic imaging , Biopsy, Fine-Needle , Diagnosis, Computer-Assisted/methods , Female , Humans , Male , Middle Aged , Reproducibility of Results , Thyroid Gland/diagnostic imaging , Thyroid Gland/pathology , Thyroid Nodule/diagnosis , Thyroid Nodule/pathology , Ultrasonography
15.
Chem Asian J ; 16(22): 3702-3712, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34553505

ABSTRACT

Interleukin-33 (IL-33) is an epithelial-derived cytokine that plays an important role in immune-mediated diseases such as asthma, atopic dermatitis, and rheumatoid arthritis. Although IL-33 is considered a potential target for the treatment of allergy-related diseases, no small molecule that inhibits IL-33 has been reported. Based on the structure-activity relationship and in vitro 2D NMR studies employing 15 N-labeled IL-33, we identified that the oxazolo[4,5-c]-quinolinone analog 7 c binds to the interface region of IL-33 and IL-33 receptor (ST2), an orphan receptor of the IL-1 receptor family. Compound 7 c effectively inhibited the production of IL-6 in human mast cells in a dose-dependent manner. Compound 7 c is the first low molecular weight IL-33 inhibitor and may be used as a prototype molecule for structural optimization and investigation of the IL-33/ST2 signaling pathway.


Subject(s)
Drug Design , Interleukin-33/antagonists & inhibitors , Quinolones/pharmacology , Dose-Response Relationship, Drug , Humans , Interleukin-1 Receptor-Like 1 Protein/antagonists & inhibitors , Interleukin-6/antagonists & inhibitors , Interleukin-6/biosynthesis , Mast Cells/drug effects , Mast Cells/metabolism , Molecular Structure , Quinolones/chemical synthesis , Quinolones/chemistry
16.
Diabetes Res Clin Pract ; 175: 108843, 2021 May.
Article in English | MEDLINE | ID: mdl-33933498

ABSTRACT

AIM: To assess the efficacy and tolerability of adjunct therapy with a sodium-glucose cotransporter-2 inhibitor, dapagliflozin, compared with insulin escalation for patients with uncontrolled type 2 diabetes on current insulin therapy. METHODS: A 12-month retrospective case-control study of patients with glycated hemoglobin (HbA1c) > 7% on insulin therapy. The study group received add-on therapy with dapagliflozin (10 mg once daily); the control group received titrated increases of their existing insulin dose by a mean of 21.6% from baseline. The primary endpoint was the change in HbA1c after 12 months. Secondary outcomes included changes in fasting plasma glucose, postprandial 2-h glucose levels, insulin requirements, and body weight. RESULTS: After 12 months, the reduction in HbA1c was significantly greater in the dapagliflozin group than in the control group (from 8.9 ±â€¯1.2% to 8.0 ±â€¯1.0% vs 9.1 ±â€¯1.2% to 8.7 ±â€¯1.5%, respectively). Results for fasting plasma glucose and postprandial 2-h glucose were similar. Dapagliflozin therapy decreased systolic blood pressure (-4.7 mmHg) and body weight (-1.4 kg) significantly, whereas body weight increased by 0.6 kg in the control group. The dapagliflozin group showed significantly fewer hypoglycemic events than the control group (18.5% vs 32.6%, respectively). Daily insulin dose increased by 5.4 ±â€¯6.1 U (21.6%) in the control group but decreased by 1.9 ±â€¯5.3 U (-4.5%) in the dapagliflozin group (p < 0.001). CONCLUSION: As an adjunct to insulin therapy, dapagliflozin therapy significantly improved glycemic control, with the clinical advantages of weight loss, insulin sparing, and less hypoglycemia.


Subject(s)
Benzhydryl Compounds/therapeutic use , Blood Glucose/drug effects , Diabetes Mellitus, Type 2/drug therapy , Drug Therapy, Combination/methods , Glucosides/therapeutic use , Insulin/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Benzhydryl Compounds/pharmacology , Case-Control Studies , Female , Glucosides/pharmacology , Humans , Insulin/physiology , Male , Middle Aged , Retrospective Studies , Sodium-Glucose Transporter 2 Inhibitors/pharmacology
17.
Int J Mol Sci ; 22(7)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33916086

ABSTRACT

Fibrates, including fenofibrate, are a class of hypolipidemic drugs that activate peroxisome proliferator-activated receptor α (PPARα), which in-turn regulates the expression of lipid and lipoprotein metabolism genes. We investigated whether fenofibrate can reduce visceral obesity and nonalcoholic fatty liver disease via adipose tissue PPARα activation in female ovariectomized (OVX) C57BL/6J mice fed a high-fat diet (HFD), a mouse model of obese postmenopausal women. Fenofibrate reduced body weight gain (-38%, p < 0.05), visceral adipose tissue mass (-46%, p < 0.05), and visceral adipocyte size (-20%, p < 0.05) in HFD-fed obese OVX mice. In addition, plasma levels of alanine aminotransferase and aspartate aminotransferase, as well as free fatty acids, triglycerides, and total cholesterol, were decreased. Fenofibrate also inhibited hepatic lipid accumulation (-69%, p < 0.05) and infiltration of macrophages (-72%, p < 0.05), while concomitantly upregulating the expression of fatty acid ß-oxidation genes targeted by PPARα and decreasing macrophage infiltration and mRNA expression of inflammatory factors in visceral adipose tissue. These results suggest that fenofibrate inhibits visceral obesity, as well as hepatic steatosis and inflammation, in part through visceral adipose tissue PPARα activation in obese female OVX mice.


Subject(s)
Dyslipidemias/prevention & control , Fatty Liver/prevention & control , Fenofibrate/therapeutic use , Hypolipidemic Agents/therapeutic use , Obesity, Abdominal/prevention & control , Adipocytes/drug effects , Animals , Diet, High-Fat , Drug Evaluation, Preclinical , Female , Fenofibrate/pharmacology , Hypolipidemic Agents/pharmacology , Intra-Abdominal Fat/metabolism , Mice, Inbred C57BL , Ovariectomy , PPAR gamma/metabolism
18.
J Ethnopharmacol ; 264: 113360, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-32918993

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Melissa officinalis L. (Labiatae; lemon balm) is a traditional medicinal plant with hypoglycemic and hypolipidemic effects; however, how it imparts its beneficial effects remains unclear. We thus hypothesized that the herbal extract ALS-L1023, isolated from Melissa officinalis, inhibits obesity and diabetes, and tested our hypothesis using Otsuka Long-Evans Tokushima fatty (OLETF) rats, which are an established animal model of type 2 diabetes. MATERIALS AND METHODS: In this study, 28-week-old OLETF rats were fed a high-fat diet for 4 weeks to induce a marked impairment of the insulin response and were treated with or without ALS-L1023. Subsequently, the variables and determinants of glucose metabolism and pancreatic function were assessed via blood analysis, histology, immunohistochemistry, and real-time polymerase chain reaction. RESULTS: The administration of ALS-L1023 resulted in a weight reduction without changes in food intake. It also markedly inhibited hyperglycemia and hypoinsulinemia, and restored ß-cell mass that was severely impaired in OLETF rats. There was a decrease in lipid accumulation in the liver and skeletal muscle of the obese rats after treatment with ALS-L1023. Concomitantly, there was an increase in the expression levels of fatty acid-oxidizing enzymes (AMPKα2, ACOX, MCAD, and VLCAD) in the liver and skeletal muscle after ALS-L1023 treatment. Furthermore, ALS-L1023 attenuated the pancreatic inflammation including the infiltration of CD68-positive macrophages and mast cells, in addition to attenuating the expression of inflammatory factors (IL-6 and CD68). CONCLUSIONS: These results suggest that treatment with ALS-L1023 may reduce weight gain, elevated glucose levels, and ß-cell loss, by changing the expression of fatty acid-oxidizing enzymes in the liver and skeletal muscle, including inflammatory factors in the pancreas. These findings indicate that ALS-L1023 may be an effective therapeutic strategy to treat human obesity and type 2 diabetes.


Subject(s)
Blood Glucose/drug effects , Insulin-Secreting Cells/drug effects , Melissa , Obesity/drug therapy , Plant Extracts/therapeutic use , Weight Gain/drug effects , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Type 2 , Diet, High-Fat/adverse effects , Dose-Response Relationship, Drug , Insulin-Secreting Cells/metabolism , Lipid Metabolism/drug effects , Lipid Metabolism/physiology , Obesity/etiology , Obesity/metabolism , Plant Extracts/pharmacology , Rats , Rats, Inbred OLETF , Rats, Long-Evans , Weight Gain/physiology
19.
Medicina (Kaunas) ; 58(1)2021 Dec 30.
Article in English | MEDLINE | ID: mdl-35056361

ABSTRACT

Hypokalemic periodic paralysis (HPP) is a neuromuscular disorder associated with muscular dysfunction caused by hypokalemia. There are various causes of HPPs and rarely, HPP appears to be relevant to tenofovir or glucocorticoid treatment. There have been several case reports of tenofovir-related nephrotoxicity or tenofovir-induced HPP. However, a case report of glucocorticoid-induced HPP in a patient using tenofovir temporarily has not been reported. Herein, we report a case of glucocorticoid-induced HPP with short-term use of tenofovir. A 28-year-old man visited the emergency room with decreased muscle power in all extremities (2/5 grade). In their past medical history, the patient was treated with tenofovir for two months for a hepatitis B virus infection. At the time of the visit, the drug had been discontinued for four months. The day before visiting the emergency room, betamethasone was administered at a local clinic for herpes on the lips. Laboratory tests showed hypokalemia, hypophosphatemia, and mild metabolic acidosis. However, urinalysis revealed no abnormal findings. Consequently, it can be postulated that this patient developed HPP by glucocorticoids after taking tenofovir temporarily. This is the first case report of glucocorticoid-induced HPP in a patient using tenofovir. Clinicians who prescribe tenofovir should be aware of HPP occurring when glucocorticoids are used.


Subject(s)
Hypokalemia , Hypokalemic Periodic Paralysis , Hypophosphatemia , Adult , Glucocorticoids/adverse effects , Humans , Hypokalemia/chemically induced , Hypokalemic Periodic Paralysis/chemically induced , Hypokalemic Periodic Paralysis/diagnosis , Hypokalemic Periodic Paralysis/drug therapy , Hypophosphatemia/chemically induced , Male , Tenofovir/adverse effects
20.
Sci Rep ; 10(1): 11492, 2020 07 13.
Article in English | MEDLINE | ID: mdl-32661228

ABSTRACT

Transient simulations of dynamic systems, using physics-based scientific computing tools, are practically limited by availability of computational resources and power. While the promise of machine learning has been explored in a variety of scientific disciplines, its application in creation of a framework for computationally expensive transient models has not been fully explored. Here, we present an ensemble approach where one such computationally expensive tool, discrete element method, is combined with time-series forecasting via auto regressive integrated moving average and machine learning methods to simulate a complex pharmaceutical problem: development of an agitation protocol in an agitated filter dryer to ensure uniform solid bed mixing. This ensemble approach leads to a significant reduction in the computational burden, while retaining model accuracy and performance, practically rendering simulations possible. The developed machine-learning model shows good predictability and agreement with the literature, demonstrating its tremendous potential in scientific computing.

SELECTION OF CITATIONS
SEARCH DETAIL
...