Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 11(22): 6574-82, 2005 Nov 04.
Article in English | MEDLINE | ID: mdl-16092142

ABSTRACT

Three kinds of hydrogen-transfer reactions, namely racemization of chiral secondary alcohols, reduction of carbonyl compounds to alcohols using 2-propanol as a hydrogen donor, and isomerization of allylic alcohols to saturated ketones, are efficiently promoted by the easily prepared and inexpensive supported ruthenium catalyst Ru(OH)x/Al2O3. A wide variety of substrates, such as aromatic, aliphatic, and heterocyclic alcohols or carbonyl compounds, can be converted into the desired products, under anaerobic conditions, in moderate to excellent yields and without the need for additives such as bases. A larger scale, solvent-free reaction is also demonstrated: the isomerization of 1-octen-3-ol with a substrate/catalyst ratio of 20,000/1 shows a very high turnover frequency (TOF) of 18,400 h(-1), with a turnover number (TON) that reaches 17,200. The catalysis for these reactions is intrinsically heterogeneous in nature, and the Ru(OH)x/Al2O3 recovered after the reactions can be reused without appreciable loss of catalytic performance. The reaction mechanism of the present Ru(OH)x/Al2O3-catalyzed hydrogen-transfer reactions were examined with monodeuterated substrates. After the racemization of (S)-1-deuterio-1-phenylethanol in the presence of acetophenone was complete, the deuterium content at the alpha-position of the corresponding racemic alcohol was 91%, whereas no deuterium was incorporated into the alpha-position during the racemization of (S)-1-phenylethanol-OD. These results show that direct carbon-to-carbon hydrogen transfer occurs via a metal monohydride for the racemization of chiral secondary alcohols and reduction of carbonyl compounds to alcohols. For the isomerization, the alpha-deuterium of 3-deuterio-1-octen-3-ol was selectively relocated at the beta-position of the corresponding ketones (99% D at the beta-position), suggesting the involvement of a 1,4-addition of ruthenium monohydride species to the alpha,beta-unsaturated ketone intermediate. The ruthenium monohydride species and the alpha,beta-unsaturated ketone would be formed through alcoholate formation/beta-elimination. Kinetic studies and kinetic isotope effects show that the Ru-H bond cleavage (hydride transfer) is included in the rate-determining step.


Subject(s)
Alcohols/chemical synthesis , Aluminum Oxide/chemistry , Hydrogen/chemistry , Ruthenium Compounds/chemistry , Catalysis , Molecular Structure , Stereoisomerism
2.
Chemistry ; 10(24): 6489-96, 2004 Dec 03.
Article in English | MEDLINE | ID: mdl-15540274

ABSTRACT

The nitration of alkanes by using nitric acid as a nitrating agent in acetic acid was efficiently promoted by vanadium-substituted Keggin-type phosphomolybdates such as [H4PVMo11O40], [H5PV2Mo10O40], and [H6PV3Mo9O40] as catalyst precursors. A variety of alkanes including alkylbenzenes were nitrated to the corresponding nitroalkanes as major products in moderate yields with formation of oxygenated products under mild reaction conditions. The carbon--carbon bond cleavage reactions hardly proceeded. ESR, NMR, and IR spectroscopic data show that the vanadium-substituted polyoxometalate, for example, [H4PVMo11O40], decomposes to form free vanadium species and [PMo12O40](3-) Keggin anion. The reaction mechanism involving a radical-chain path is proposed. The polyoxometalates initially abstract the hydrogen of the alkane to form the alkyl radical and the reduced polyoxometalates. The reduced polyoxometalates subsequently react with nitric acid to produce the oxidized form and nitrogen dioxide. This step would be promoted mainly by the phosphomolybdates, [PMo12O40](n-), and the vanadium cations efficiently enhance the activity. The nitrogen dioxide promotes the further formation of nitrogen dioxide and an alkyl radical. The alkyl radical is trapped by nitrogen dioxide to form the corresponding nitroalkane.

3.
Chem Commun (Camb) ; (4): 424-5, 2004 Feb 21.
Article in English | MEDLINE | ID: mdl-14765240

ABSTRACT

[VO(H2O)5]H[PMo12O40], which contains vanadyl counter cations and PMo12O40(3-), can act as a catalyst for the nitration of various alkanes including alkylbenzenes using nitric acid as a nitrating agent in acetic acid at 356 K.

SELECTION OF CITATIONS
SEARCH DETAIL
...