Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
2.
RSC Adv ; 13(35): 24767-24776, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37601590

ABSTRACT

AlCl3-loaded ZnO nanoparticles have been explored as an efficient catalyst for 1,4-dihydropyridine synthesis under ambient temperature and solvent-free conditions. For this purpose, ZnO nanoparticles were synthesized by a simple solution-based precipitation technique using a stoichiometric amount of zinc sulfate and oxalic acid. The AlCl3@ZnO nanocrystalline catalyst was prepared by loading 20% AlCl3 on ZnO nanoparticles by a simple wet-impregnation technique. This catalyst efficiently performed Hantzsch pyridine reactions with various aromatic aldehydes, ethyl acetoacetate and ammonium acetate. The nanostructured AlCl3-loaded ZnO catalyst was characterized by UV-DRS, XRD, FESEM, EDS, FETEM-STEM-EDS and XPS techniques. The comprehensive characterization reveals the formation of AlCl3-loaded ZnO catalysts with an average particle size of 70-80 nm. The loading of AlCl3 on the ZnO surface was confirmed by minor shifts in the XPS and XRD peaks. FETEM-STEM-EDS also indicates reasonable AlCl3 loading on ZnO nanoparticles. The 20% AlCl3-loaded ZnO nanocatalyst (AlCl3@ZnO) confers 92% yield for the synthesis of 1,4-dihydropyridine under solvent-free and ambient temperature conditions. The synthesized 1,4-dihydropyridines were characterized by 1H-NMR, 13C-NMR, HRMS and FT-IR spectroscopic techniques. The reported catalyst is highly efficient, environmentally friendly and could become an alternative to homogenous and heterogenous catalytic reactions.

3.
RSC Adv ; 13(29): 20068-20080, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37409038

ABSTRACT

Herein, we have demonstrated a facile electroless Ni coated nanostructured TiO2 photocatalyst for the first time. More significantly the photocatalytic water splitting shows excellent performance for hydrogen production which is hitherto unattempted. The structural study exhibits majorly the anatase phase along with the minor rutile phase of TiO2. Interestingly, electroless nickel deposited on the TiO2 nanoparticles of size 20 nm shows a cubic structure with nanometer scale Ni coating (1-2 nm). XPS supports the existence of Ni without any oxygen impurity. The FTIR and Raman studies support the formation of TiO2 phases without any other impurities. The optical study shows a red shift in the band gap due to optimum nickel loading. The emission spectra show variation in the intensity of the peaks with Ni concentration. The vacancy defects are pronounced in lower concentrations of Ni loading which shows the formation of a huge number of charge carriers. The electroless Ni loaded TiO2 has been used as a photocatalyst for water splitting under solar light. The primary results manifest that the hydrogen evolution of electroless Ni plated TiO2 is 3.5 times higher (1600 µmol g-1 h-1) than pristine TiO2 (470 µmol g-1 h-1). As shown in the TEM images, nickel is completely electroless plated on the TiO2 surface, which accelerates the fast transport of electrons to the surface. It suppresses the electron-hole recombination drastically which is responsible for higher hydrogen evolution using electroless Ni plated TiO2. The recycling study exhibits a similar amount of hydrogen evolution at similar conditions which shows the stability of the Ni loaded sample. Interestingly, Ni powder loaded TiO2 did not show any hydrogen evolution. Hence, the approach of electroless plating of nickel over the semiconductor surface will have potential as a good photocatalyst for hydrogen evolution.

4.
RSC Adv ; 13(4): 2418-2426, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36741188

ABSTRACT

Herein we have prepared the Ni-decorated SnS2 nanosheets with varying concentrations of Ni from 1 to 10 mol% (1, 2.5, 5, and 10 mol%) and studied their various physicochemical and photocatalytic properties. The chemical reduction technique was utilized to load the Ni nanoparticles on SnS2 nanosheets. The synthesized Ni decorated SnS2 (denoted as Ni-SnS2) was characterized using different spectroscopic techniques such as X-ray diffraction, diffuse reflectance UV-vis and photoluminescence spectroscopy, field emission scanning electron microscopy (FESEM), and field emission transmission electron microscopy (FETEM). XRD revealed the formation of the highly crystalline hexagonal phase of SnS2 but for nickel loading there is no additional peak observed. Further, the as-prepared Ni-SnS2 nano-photocatalyst shows absorption behaviour in the visible region, and photoluminescence spectra of the Ni-SnS2 nanostructures show band edge emission centred at 524 nm, and the peak intensity decreases with Ni loading. The FE-SEM and FE-TEM confirm the formation of hexagonal sheets having evenly distributed Ni nanoparticles of size ∼5-10 nm. BET surface area analysis was observed to be enhanced with Ni loading. The photocatalytic performance of the prepared Ni-SnS2 nanosheets was evaluated for hydrogen generation via water splitting under a 400 W mercury vapour lamp. Among the prepared Ni-SnS2 nanostructures, the Ni loaded with 2.5 mol% provided the highest hydrogen production i.e., 1429.2 µmol 0.1 g-1 (% AQE 2.32) in four hours, almost 1.6 times that of pristine SnS2 i.e., 846 µmol 0.1 g-1. Furthermore, the photocatalytic performance of the catalyst is also correlated with the photoconductivity by measuring the photocurrent. The photoconductivity of the samples is revealed to be stable and the conductivity of 2.5 mol% Ni-SnS2 is higher i.e. 20 times that of other Ni-SnS2 and pristine SnS2 catalysts.

5.
RSC Adv ; 12(17): 10467-10488, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35425017

ABSTRACT

Seeds are vulnerable to physical and biological stresses during the germination process. Seed priming strategies can alleviate such stresses. Seed priming is a technique of treating and drying seeds prior to germination in order to accelerate the metabolic process of germination. Multiple benefits are offered by seed priming techniques, such as reducing fertilizer use, accelerating seed germination, and inducing systemic resistance in plants, which are both cost-effective and eco-friendly. For seed priming, cold plasma (CP)-mediated priming could be an innovative alternative to synthetic chemical treatments. CP priming is an eco-friendly, safe and economical, yet relatively less explored technique towards the development of seed priming. In this review, we discussed in detail the application of CP technology for seed priming to enhance germination, the quality of seeds, and the production of crops in a sustainable manner. Additionally, the combination treatment of CP with nanoparticle (NP) priming is also discussed. The large numbers of parameters need to be monitored and optimized during CP treatment to achieve the desired priming results. Here, we discussed a new perspective of machine learning for modeling plasma treatment parameters in agriculture for the development of synergistic protocols for different types of seed priming.

6.
Sci Rep ; 11(1): 13068, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34158586

ABSTRACT

Over the past few years, biogenic methods for designing silver nanocomposites are in limelight due to their ability to generate semi-healthcare and para-pharmaceutical consumer goods. The present study reports the eco-friendly synthesis of silver nanoparticles from the hitherto unexplored mucus of territorial snail Achatina fulica by the facile, clean and easily scalable method. The detailed characterization of the resultant samples by UV-Visible Spectroscopy, FESEM-EDS, XRD and FTIR Spectroscopy techniques corroborated the formation of silver nanoparticles in snail mucus matrix. The resultant samples were tested against a broad range of Gram positive and Gram negative bacteria like Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa and a fungal strain Aspergillus fumigatus by well diffusion method. The results indicate that silver nanoparticles in mucus matrix exhibit strong antibacterial as well as antifungal activity. The pertinent experiments were also performed to determine the inhibitory concentration against both bacterial and fungal strains. Anticancer activity was executed by in vitro method using cervical cancer cell lines. Curiously, our biogenically synthesized Ag nanoparticles in biocompatible mucus revealed anticancer activity and demonstrated more than 15% inhibition of Hela cells. We suggest an interesting possibility of formulating antimicrobial and possibly anticancer creams/gels for topical applications in skin ailments.


Subject(s)
Anti-Infective Agents/pharmacology , Antineoplastic Agents/pharmacology , Green Chemistry Technology , Metal Nanoparticles/chemistry , Mucus/chemistry , Silver/pharmacology , Snails/chemistry , Animals , DNA/analysis , HeLa Cells , Humans , Inhibitory Concentration 50 , Metal Nanoparticles/ultrastructure , Microbial Sensitivity Tests , Proteins/analysis , RNA/analysis , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , X-Ray Diffraction
7.
J Nanosci Nanotechnol ; 21(10): 5337-5343, 2021 10 01.
Article in English | MEDLINE | ID: mdl-33875127

ABSTRACT

In our current endeavor, 3-dimensional (3D) tungsten oxide (WO3) nanostructures (nanocubes, nanobars and nanobricks) have been swiftly generated via hydrothermal route at 160 °C for 24 h. Physico-chemical characterization of the resultant powder revealed formation of WO3 nanostructures with predominantly faceted cube, brick and rectangular bar-like morphology. The present study was also aimed at exploring the antimicrobial and anticancer potential of WO3 nanostructures. Antimicrobial activity was tested against different micro-organisms viz., Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae, Escherichia coli and Aspergillus fumigatus. The antibacterial and antifungal activity was ascertained against these micro-organisms by measuring the diameter of inhibition zone in agar well diffusion test which revealed that the resultant WO3 nanostructures acted as excellent antibacterial agents against both bacteria and fungi but were more effective against the fungus, A. fumigatus. To examine the growth curves of bacterial cells, time kill assay was monitored for E. coli, against which significant antibacterial action of WO3 nanostructures was noted. The anti-cancer activity of WO3 nanostructures was found to be concentration-dependent against KB cell line by viable cell count method. In our pilot study, WO3 nanostructures suspension with concentration in the range of 10-1 to 10-5 mg/ml was found to kill KB cells effectively.


Subject(s)
Anti-Infective Agents , Escherichia coli , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antifungal Agents/pharmacology , Humans , Microbial Sensitivity Tests , Pilot Projects , Tungsten/pharmacology
8.
Sci Rep ; 10(1): 4198, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32144298

ABSTRACT

Herein, the preparation of gold nanoparticles-silk fibroin (SF-AuNPs) dispersion and its label-free colorimetric detection of the organophosphate pesticide, namely chlorpyrifos, at ppb level are reported. The silk fibroin solution was extracted from B. mori silk after performing degumming, dissolving and dialysis steps. This fibroin solution was used for synthesis of gold nanoparticles in-situ without using any external reducing and capping agent. X-ray Diffractometry (XRD), Field Emission Transmission Electron Microscopy (FETEM) along with Surface Plasmon Resonance based optical evaluation confirmed generation of gold nanoparticles within SF matrix. The resultant SF-AuNPs dispersion exhibited rapid and excellent colorimetric pesticide sensing response even at 10 ppb concentration. Effect of additional parameters viz. pH, ionic concentration and interference from other pesticide samples was also studied. Notably, SF-AuNPs dispersion exhibited selective colorimetric pesticide sensing response which can be calibrated. Furthermore, this method was extended to various simulated real life samples such as tap water, soil and agricultural products including plant residues to successfully detect the presence of chlorpyrifos pesticide. The proposed colorimetric sensor system is facile yet effective and can be employed by novice rural population and expert researchers alike. It can be exploited as preliminary tool for label-free colorimetric chlorpyrifos pesticide sensing in water and agricultural products.


Subject(s)
Chlorpyrifos/chemistry , Colorimetry/methods , Fibroins/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Pesticides/chemistry , Fibroins/ultrastructure , Hydrodynamics , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Transmission , X-Ray Diffraction
9.
J Nanosci Nanotechnol ; 20(4): 2122-2129, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31492220

ABSTRACT

Innovative colorimetric biosensing platform has been realized by in-situ synthesis of silver nanoparticles in silk-fibroin matrix derived from domesticated silkworm species Bombyx mori. As-synthesized nano-biocomposite dispersion was characterized by UV-Vis spectroscopy and transmission electron microscopy. In a pilot attempt to develop hassle free on-site screening protocol, such green hybrid systems were explored for colorimetric detection of broad range of metal ion targets, viz. toxic heavy metals such as mercury and chromium (which adversely affect hydrosphere, lithosphere, anthroposphere and biosphere) as well as relatively less-toxic metals like copper and iron in a solution. Quite interestingly, our simple biointerfacial-sensing approach reveals highly selective colorimetric sensor response down to ppb level for mercury ions analyte.


Subject(s)
Fibroins , Mercury , Metal Nanoparticles , Nanocomposites , Colorimetry , Ions , Silver
10.
J Nanosci Nanotechnol ; 19(6): 3479-3486, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30744775

ABSTRACT

We report tunable-morphology oriented facile yet scalable route to synthesize 1D (nanorod) and 2D (nanobelt) MoO3 nanostructures at gram scale using conventional as well as sonochemistry assisted sol-gel technique. The structural, morphological and optical properties of the samples can be befittingly altered by varying the synthesis protocol. The resultant orthorhombic MoO3 nanomorphs demonstrated efficient and expeditious photocatalytic degradation of the pollutant dye, Methylene Blue (MB). We have observed that appreciable photocatalytic MB dye-degradation can be accomplished within 30 minutes with high rate constants of 0.0786 min-1 and 0.233 min-1 for rod and belt-like MoO3-nanostructures, respectively. The pilot results indicate that the resultant MoO3 nanomorphs can be potentially used as solar light driven industrial photocatalyst material with their intrinsic photostability.

11.
RSC Adv ; 9(56): 32735-32743, 2019 Oct 10.
Article in English | MEDLINE | ID: mdl-35529759

ABSTRACT

One-pot green synthesis of propargylamines using ZnCl2 loaded TiO2 nanomaterial under solvent-free conditions has been effectively accomplished. The aromatic aldehydes, amines, and phenylacetylene were reacted at 100 °C in the presence of the resultant catalyst to form propargylamines. The nanocrystalline TiO2 was initially synthesized by a sol-gel method from titanium(iv) isopropoxide (TTIP) and further subjected to ZnCl2 loading by a wet impregnation method. X-ray diffraction (XRD) patterns revealed the formation of crystalline anatase phase TiO2. Field emission scanning electron microscopy (FESEM) showed the formation of agglomerated spheroid shaped particles having a size in the range of 25-45 nm. Transmission electron microscopy (TEM) validates cubical faceted and nanospheroid-like morphological features with clear faceted edges for the pure TiO2 sample. Surface loading of ZnCl2 on spheroid TiO2 nanoparticles is evident in the case of the ZnCl2 loaded TiO2 sample. X-ray photoelectron spectroscopy (XPS) confirmed the presence of Ti4+ and Zn2+ species in the ZnCl2 loaded TiO2 catalyst. Energy-dispersive X-ray (EDS) spectroscopy also confirmed the existence of Ti, O, Zn and Cl elements in the nanostructured catalyst. 15% ZnCl2 loaded TiO2 afforded the highest 97% yield for 3-(1-morpholino-3-phenylprop-2-ynyl)phenol, 2-(1-morpholino-3-phenylprop-2-ynyl)phenol and 4-(1,3-diphenylprop-2-ynyl)morpholine under solvent-free and aerobic conditions. The proposed nanostructure-based heterogeneous catalytic reaction protocol is sustainable, environment-friendly and offers economic viability in terms of recyclability of the catalyst.

12.
Sci Rep ; 7(1): 15531, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-29138496

ABSTRACT

Dialyzed natural polymer, fibroin, from Bombyx mori was used to synthesize biocompatible silver and gold nanoparticles in-situ in dispersion form. The films of pure fibroin (PF), fibroin-silver nanocomposite (FSNC) and fibroin-gold nanocomposite (FGNC) were fabricated by drop casting method. The characterization of the resultant dispersion and films was performed by visual color change, UV-Vis spectroscopy and atomic force microscopy. The dispersions of PF, FSNC and FGNC were tested for antibacterial activity against E. coli NCIM 2065, S. aureus NCIM 5021, K. pneumoniae NCIM 2957, P. aeruginosa ATCC 9027 and antifungal activity against A. fumigatus NCIM 902. FSNC dispersion exhibited an effective antimicrobial action against all the tested microbes as compared to FGNC dispersion. The mechanism of action for FSNC and FGNC against these microorganisms is proposed. Additionally, the larvicidal activity of the films was investigated against the larvae of Aedes aegypti. The films of FSNC exhibited 100% mortality while the films of FGNC revealed 86-98% mortality against all the larval instars and pupae of A. aegypti. The phytotoxicity study of the nanocomposite films was also carried out to confirm the reusability of water. This is first noble metal nanocomposite based report on larvicidal activity of zika virus vector.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Gold/pharmacology , Insecticides/pharmacology , Metal Nanoparticles/chemistry , Mosquito Vectors/drug effects , Nanocomposites/chemistry , Silver/pharmacology , Zika Virus Infection/prevention & control , Zika Virus Infection/transmission , Aedes/drug effects , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Aspergillus fumigatus/drug effects , Escherichia coli/drug effects , Gold/chemistry , Insecticides/chemical synthesis , Insecticides/chemistry , Klebsiella pneumoniae/drug effects , Larva/drug effects , Pseudomonas aeruginosa/drug effects , Silver/chemistry , Staphylococcus aureus/drug effects , Triticum/drug effects , Zika Virus
13.
Nano Converg ; 4(1): 25, 2017.
Article in English | MEDLINE | ID: mdl-29034145

ABSTRACT

Herein, we report the synthesis of metallic molybdenum microspheres and hierarchical MoS2 nanostructures by facile template-free solvothermal and hydrothermal approach, respectively. The morphological transition of the Mo microspheres to hierarchical MoS2 nanoflower architectures is observed to be accomplished with change in solvent from ethylenediamine to water. The resultant marigold flower-like MoS2 nanostructures are few layers thick with poor crystallinity while spherical ball-like molybdenum microspheres exhibit better crystalline nature. This is the first report pertaining to the synthesis of Mo microspheres and MoS2 nanoflowers without using any surfactant, template or substrate in hydro/solvothermal regime. It is opined that such nanoarchitectures of MoS2 are useful candidates for energy related applications such as hydrogen evolution reaction, Li ion battery and pseudocapacitors. Inquisitively, metallic Mo can potentially act as catalyst as well as fairly economical Surface Enhanced Raman Spectroscopy (SERS) substrate in biosensor applications.

14.
Phys Chem Chem Phys ; 19(31): 20541-20550, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28730203

ABSTRACT

We have demonstrated the synthesis of Ag3PO4/LaCO3OH (APO/LCO) heterostructured photocatalysts by an in situ wet chemical method. From pre-screening evaluations of photocatalysts with APO/(x wt% LCO) composites with mass ratios of x = 5, 10, 15, 20, 25 and 30 wt%, we found that the APO/LCO (20 wt%) exhibited a superior photocatalytic activity for organic pollutant remediation. Therefore, an optimised photocatalyst APO/LCO (20 wt%) is selected for the present study and we investigate the effect of a mixed solvent system (H2O:THF) on the morphology, which has a direct effect on the photocatalytic performance. Interestingly, a profound effect on the morphological features of APO/LCO20 heterostructures was observed with variation in the ratio of the solvent system. From the FESEM study it is observed that the LCO spherical nanoparticles are transformed into nanorods with the variation of THF into the solvent system. Moreover, these LCO nanorods make intimate contact with the APO microstructures which is helpful for the improvement of the photocatalytic activity. The photocatalytic activities of the APO/LCO composites with different solvent ratios were evaluated by the degradation of rhodamine B (RhB) under visible light irradiation. Excellent photocatalytic activity was observed for the APO/LCO-2 (H2O : THF = 60 : 40) sample. This might be due to uniform covering of the APO microstructures by fine LCO rod-like structures offering intimate contact between the APO and LCO and providing proper channels for the degradation reactions. Furthermore, with an increasing THF volume ratio in the reaction system there was an increase of the dimensions of the LCO rod-like structures and also a loose compactness of their uniform intimate contact between the APO/LCO heterostructures. All in all, the enhanced photocatalytic activity of the APO/LCO heterostructures is attributed to the collective co-catalytic effect of LCO, by providing accelerated charge separation through the heterojunction interface, and THF, by helping to tune the unique morphological features which eventually facilitate the photocatalysis process.

15.
IEEE Trans Nanobioscience ; 15(3): 258-64, 2016 04.
Article in English | MEDLINE | ID: mdl-27164597

ABSTRACT

In our contemporary endeavor, metallic molybdenum (Mo) and semiconducting molybdenum trioxide (MoO3) nanostructures have been simultaneously generated via solid state reaction between molybdenum (III) chloride (MoCl3) and polyphenylene sulfide (PPS) at 285 (°)C in unimolar ratio for different time durations, namely, 6 h, 24 h, and 48 h. The resultant nanocomposites (NCs) revealed formation of predominantly metallic Mo for all the samples. However, MoO3 gradually gained prominent position as secondary phase with rise in reaction time. The present study was intended to investigate the antibacterial potential of metal-metal oxide-polymer NCs, i.e., Mo- MoO3-PPS against microorganisms, viz., Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae, and Aspergillus fumigatus. The antibacterial activity of the NCs was evaluated by agar well diffusion investigation. Maximum sensitivity concentrations of NCs were determined by finding out minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC). Moreover, the NCs prepared at reaction time of 48 h exhibited best MBC values and were tested with time kill assay which revealed that the growth of S. aureus was substantially inhibited by Mo- MoO3-PPS NCs. This synchronized formation of Mo- MoO3 nanostructures in an engineering thermoplastic may have potential antimicrobial applications in biomedical devices and components. Prima facie results on antifungal activity are indicative of the fact that these materials can show anti-cancer behavior.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/pharmacology , Molybdenum/pharmacology , Nanocomposites/chemistry , Oxides/pharmacology , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemistry , Aspergillus fumigatus/drug effects , Bacteria/drug effects , Hot Temperature , Microbial Sensitivity Tests , Molybdenum/chemistry , Oxides/chemistry , Plastics/chemistry , Plastics/pharmacology , Polymers/chemistry , Polymers/pharmacology
16.
J Nanosci Nanotechnol ; 12(2): 887-93, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22629869

ABSTRACT

We, herein, report the antimicrobial properties of uncapped silver nanoparticles for a Gram positive model organism, Bacillus subtilis. Uncapped silver nanoparticles have been prepared using less-explored DC arc thermal plasma technique by considering its large scale generation capability. It is observed that the resultant nanoparticles show size as well as optical property dependent antimicrobial effect.


Subject(s)
Anti-Bacterial Agents/chemistry , Metal Nanoparticles , Silver/chemistry , Anti-Bacterial Agents/pharmacology , Bacillus subtilis/drug effects , Microbial Sensitivity Tests , Microscopy, Electron, Transmission , Silver/pharmacology
17.
J Nanosci Nanotechnol ; 11(6): 5098-101, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21770149

ABSTRACT

Herein we report an extremely simple one-pot synthesis of lead sulphide nanorods inside the engineering thermoplastic (i.e. polyphenylene sulphide) which plays a dual role of stabilizing matrix as well as a chalcogen source. The effect of molar ratios of the reactants on the morphology of the samples was studied. The prima facie observations suggest the effective formation of 1-D PbS nanorods along with cubic lead as an impurity phase. The average aspect ratio is found to be approximately 4 to 42 depending upon the reactant molar ratio.

SELECTION OF CITATIONS
SEARCH DETAIL
...