Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Oncologist ; 26(6): e943-e953, 2021 06.
Article in English | MEDLINE | ID: mdl-33641217

ABSTRACT

Invasive lobular carcinoma (ILC) accounts for 10% to 15% of breast cancers in the United States, 80% of which are estrogen receptor (ER)-positive, with an unusual metastatic pattern of spread to sites such as the serosa, meninges, and ovaries, among others. Lobular cancer presents significant challenges in detection and clinical management given its multifocality and multicentricity at presentation. Despite the unique features of ILC, it is often lumped with hormone receptor-positive invasive ductal cancers (IDC); consequently, ILC screening, treatment, and follow-up strategies are largely based on data from IDC. Despite both being treated as ER-positive breast cancer, querying the Cancer Genome Atlas database shows distinctive molecular aberrations in ILC compared with IDC, such as E-cadherin loss (66% vs. 3%), FOXA1 mutations (7% vs. 2%), and GATA3 mutations (5% vs. 20%). Moreover, compared with patients with IDC, patients with ILC are less likely to undergo breast-conserving surgery, with lower rates of complete response following therapy as these tumors are less chemosensitive. Taken together, this suggests that ILC is biologically distinct, which may influence tumorigenesis and therapeutic strategies. Long-term survival and clinical outcomes in patients with ILC are worse than in stage- and grade-matched patients with IDC; therefore, nuanced criteria are needed to better define treatment goals and protocols tailored to ILC's unique biology. This comprehensive review highlights the histologic and clinicopathologic features that distinguish ILC from IDC, with an in-depth discussion of ILC's molecular alterations and biomarkers, clinical trials and treatment strategies, and future targets for therapy. IMPLICATIONS FOR PRACTICE: The majority of invasive lobular breast cancers (ILCs) are hormone receptor (HR)-positive and low grade. Clinically, ILC is treated similar to HR-positive invasive ductal cancer (IDC). However, ILC differs distinctly from IDC in its clinicopathologic characteristics and molecular alterations. ILC also differs in response to systemic therapy, with studies showing ILC as less sensitive to chemotherapy. Patients with ILC have worse clinical outcomes with late recurrences. Despite these differences, clinical trials treat HR-positive breast cancers as a single disease, and there is an unmet need for studies addressing the unique challenges faced by patients diagnosed with ILC.


Subject(s)
Breast Neoplasms , Carcinoma, Ductal, Breast , Carcinoma, Lobular , Breast Neoplasms/genetics , Breast Neoplasms/surgery , Carcinoma, Lobular/genetics , Carcinoma, Lobular/therapy , Female , Humans , Mastectomy, Segmental
2.
Breast Cancer Res ; 21(1): 80, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31315645

ABSTRACT

BACKGROUND: A large collaborative analysis of data from 47 epidemiological studies concluded that longer duration of breastfeeding reduces the risk of developing breast cancer. Despite the strong epidemiological evidence, the molecular mechanisms linking prolonged breastfeeding to decreased risk of breast cancer remain poorly understood. METHODS: We modeled two types of breastfeeding behaviors in wild type FVB/N mice: (1) normal or gradual involution of breast tissue following prolonged breastfeeding and (2) forced or abrupt involution following short-term breastfeeding. To accomplish this, pups were gradually weaned between 28 and 31 days (gradual involution) or abruptly at 7 days postpartum (abrupt involution). Mammary glands were examined for histological changes, proliferation, and inflammatory markers by immunohistochemistry. Fluorescence-activated cell sorting was used to quantify mammary epithelial subpopulations. Gene set enrichment analysis was used to analyze gene expression data from mouse mammary luminal progenitor cells. Similar analysis was done using gene expression data generated from human breast samples obtained from parous women enrolled on a tissue collection study, OSU-2011C0094, and were undergoing reduction mammoplasty without history of breast cancer. RESULTS: Mammary glands from mice that underwent abrupt involution exhibited denser stroma, altered collagen composition, higher inflammation and proliferation, increased estrogen receptor α and progesterone receptor expression compared to those that underwent gradual involution. Importantly, when aged to 4 months postpartum, mice that were in the abrupt involution cohort developed ductal hyperplasia and squamous metaplasia. Abrupt involution also resulted in a significant expansion of the luminal progenitor cell compartment associated with enrichment of Notch and estrogen signaling pathway genes. Breast tissues obtained from healthy women who breastfed for < 6 months vs ≥ 6 months showed significant enrichment of Notch signaling pathway genes, along with a trend for enrichment for luminal progenitor gene signature similar to what is observed in BRCA1 mutation carriers and basal-like breast tumors. CONCLUSIONS: We report here for the first time that forced or abrupt involution of the mammary glands following pregnancy and lack of breastfeeding results in expansion of luminal progenitor cells, higher inflammation, proliferation, and ductal hyperplasia, a known risk factor for developing breast cancer.


Subject(s)
Breast Feeding , Breast Neoplasms/etiology , Breast Neoplasms/metabolism , Estrogens/metabolism , Inflammation/complications , Inflammation/metabolism , Signal Transduction , Animals , Biopsy , Breast Neoplasms/pathology , Collagen/metabolism , Disease Models, Animal , Disease Susceptibility , Epithelial Cells/metabolism , Estrogens/adverse effects , Female , Flow Cytometry , Gene Expression Profiling , Humans , Hyperplasia , Immunohistochemistry , Inflammation/pathology , Lactation , Mice , Pregnancy , Receptors, Estrogen/metabolism , Risk Assessment , Risk Factors , Steroids/metabolism
3.
Cell Rep ; 27(12): 3547-3560.e5, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31130414

ABSTRACT

Orchestrating cell-cycle-dependent mRNA oscillations is critical to cell proliferation in multicellular organisms. Even though our understanding of cell-cycle-regulated transcription has improved significantly over the last three decades, the mechanisms remain untested in vivo. Unbiased transcriptomic profiling of G0, G1-S, and S-G2-M sorted cells from FUCCI mouse embryos suggested a central role for E2Fs in the control of cell-cycle-dependent gene expression. The analysis of gene expression and E2F-tagged knockin mice with tissue imaging and deep-learning tools suggested that post-transcriptional mechanisms universally coordinate the nuclear accumulation of E2F activators (E2F3A) and canonical (E2F4) and atypical (E2F8) repressors during the cell cycle in vivo. In summary, we mapped the spatiotemporal expression of sentinel E2F activators and canonical and atypical repressors at the single-cell level in vivo and propose that two distinct E2F modules relay the control of gene expression in cells actively cycling (E2F3A-8-4) and exiting the cycle (E2F3A-4) during mammalian development.


Subject(s)
Cell Cycle Proteins/metabolism , Cell Cycle , Cell Differentiation , E2F3 Transcription Factor/physiology , E2F4 Transcription Factor/physiology , Gene Expression Regulation , Repressor Proteins/physiology , Animals , Cell Cycle Proteins/genetics , Cell Proliferation , Cells, Cultured , Female , Male , Mice , Mice, Knockout , Promoter Regions, Genetic , Transcriptome
4.
Nat Commun ; 9(1): 2783, 2018 07 17.
Article in English | MEDLINE | ID: mdl-30018330

ABSTRACT

The importance of the tumor-associated stroma in cancer progression is clear. However, it remains uncertain whether early events in the stroma are capable of initiating breast tumorigenesis. Here, we show that in the mammary glands of non-tumor bearing mice, stromal-specific phosphatase and tensin homolog (Pten) deletion invokes radiation-induced genomic instability in neighboring epithelium. In these animals, a single dose of whole-body radiation causes focal mammary lobuloalveolar hyperplasia through paracrine epidermal growth factor receptor (EGFR) activation, and EGFR inhibition abrogates these cellular changes. By analyzing human tissue, we discover that stromal PTEN is lost in a subset of normal breast samples obtained from reduction mammoplasty, and is predictive of recurrence in breast cancer patients. Combined, these data indicate that diagnostic or therapeutic chest radiation may predispose patients with decreased stromal PTEN expression to secondary breast cancer, and that prophylactic EGFR inhibition may reduce this risk.


Subject(s)
Breast Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Mammary Neoplasms, Experimental/genetics , PTEN Phosphohydrolase/genetics , Radiation Tolerance/genetics , Animals , Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/radiotherapy , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Cell Transformation, Neoplastic , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/radiation effects , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Gamma Rays/adverse effects , Genomic Instability/drug effects , Genomic Instability/radiation effects , Humans , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/radiation effects , Mammary Glands, Human/drug effects , Mammary Glands, Human/metabolism , Mammary Glands, Human/radiation effects , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Mammary Neoplasms, Experimental/radiotherapy , Mice , PTEN Phosphohydrolase/deficiency , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Stromal Cells/drug effects , Stromal Cells/metabolism , Stromal Cells/radiation effects
5.
J Clin Invest ; 126(8): 2955-69, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27454291

ABSTRACT

E2F-mediated transcriptional repression of cell cycle-dependent gene expression is critical for the control of cellular proliferation, survival, and development. E2F signaling also interacts with transcriptional programs that are downstream of genetic predictors for cancer development, including hepatocellular carcinoma (HCC). Here, we evaluated the function of the atypical repressor genes E2f7 and E2f8 in adult liver physiology. Using several loss-of-function alleles in mice, we determined that combined deletion of E2f7 and E2f8 in hepatocytes leads to HCC. Temporal-specific ablation strategies revealed that E2f8's tumor suppressor role is critical during the first 2 weeks of life, which correspond to a highly proliferative stage of postnatal liver development. Disruption of E2F8's DNA binding activity phenocopied the effects of an E2f8 null allele and led to HCC. Finally, a profile of chromatin occupancy and gene expression in young and tumor-bearing mice identified a set of shared targets for E2F7 and E2F8 whose increased expression during early postnatal liver development is associated with HCC progression in mice. Increased expression of E2F8-specific target genes was also observed in human liver biopsies from HCC patients compared to healthy patients. In summary, these studies suggest that E2F8-mediated transcriptional repression is a critical tumor suppressor mechanism during postnatal liver development.


Subject(s)
Carcinoma, Hepatocellular/metabolism , E2F7 Transcription Factor/metabolism , Liver Neoplasms/metabolism , Liver/growth & development , Repressor Proteins/metabolism , Alleles , Animals , Biopsy , Cell Proliferation , Cell Survival , DNA/analysis , E2F7 Transcription Factor/genetics , Female , Gene Deletion , Genotype , Hepatocytes/cytology , Humans , Liver/physiology , Male , Mice , Oligonucleotide Array Sequence Analysis , Protein Binding , Protein Domains , Repressor Proteins/genetics , Sequence Analysis, RNA , Signal Transduction
6.
J Assoc Physicians India ; 62(12): 30-4, 2014 Dec.
Article in English | MEDLINE | ID: mdl-26259420

ABSTRACT

OBJECTIVES: To evaluate the effects of predialytic oral nutritional supplementation in chronic kidney disease (CKD) patients on maintenance haemodialysis (MHD). METHODS: NEPRO HP was provided to 77 CKD patients on maintenance haemodialysis (MHD) over 3 months. Efficacy parameters were improvement in albumin levels, weight and haemoglobin levels; safety parameters were serum potassium and phosphorus values; other parameters were SGA and MIS scores. RESULTS: Mean serum albumin values showed a statistically significant increase. There was a statistically significant improvement in the mean body weight and haemoglobin of the patients in the second and third months of treatment. Serum phosphorus and potassium levels did not change in a statistically significant manner. There was improvement in nourishment status as detected by MIS and SGA scores. Two patients expired during the course of the study. CONCLUSION: Predialytic oral supplementation with NEPRO HP improves nutritional status of CKD patients on MHD.


Subject(s)
Dietary Supplements , Kidney Failure, Chronic/complications , Kidney Failure, Chronic/therapy , Malnutrition/complications , Malnutrition/therapy , Renal Dialysis , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Nutritional Status , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...