Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Free Radic Res ; 53(6): 629-640, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31072168

ABSTRACT

Radiation chemical studies of thioesculetin (1), a thioketone derivative of coumarin, were performed by both pulse radiolysis technique and DFT calculations. Hydroxyl (•OH) radical reaction with 1 resulted transients absorbing at 320, 360 and 500 nm. To identify the nature of the transients, the reaction was studied with specific one-electron oxidant (N3•) radical, where 360 nm band was absent. The transient absorption at 500 nm was concentration-dependent. The overall impression for •OH radical reaction was that the transient absorbing at 320, 360 and 500 nm was due to sulphur centred monomer radical, hydroxysulfuranyl and dimer radical of 1 respectively. The equilibrium constant between the monomer to dimer radical was 3.75 × 104 M-1. From the transients' redox nature, it was observed that 57 and 24% of •OH radical yielded to oxidising and reducing products respectively. Further, the product analysis by HPLC suggested that the dimer radical disproportionate to esculetin and thioesculetin. DFT energy calculation for all the possible transients revealed that dimer radical has the lowest energy. The HOMO of 1 and its monomer radical suggested that the electron density was localised on the sulphur atom. The bond length between the two sulphur atoms in dimer radical was 2.88 Å which was less than the van der Waals distance. Bond order between the two sulphur atoms was 0.55, suggesting that the bond was two centre three electron (2c-3e). From TD-DFT calculation, the electronic transition of dimer radical was at 479 nm which was in close agreement with the experimental value. The nature of the electronic transition was σ → σ* from a 2c - 3e bond.


Subject(s)
Coumarins/chemistry , Density Functional Theory , Electrons , Hydroxyl Radical/chemistry
2.
Photochem Photobiol Sci ; 17(9): 1197-1205, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30043019

ABSTRACT

The interaction of the cupric ion with esculetin, a dihydroxy coumarin derivative, was studied by absorption and fluorescence spectroscopic methods in aqueous medium. Esculetin formed a complex in the presence of the cupric ion which was characterised by the shift in its absorption band from 350 nm to 389 nm and the quenching of its fluorescence intensity at 466 nm. From Job's plot and fluorescence quenching studies, the stoichiometry of the copper ion and esculetin in the complex was estimated to be 1 : 2 respectively. Interestingly, the incubation of the Cu(ii)-esculetin complex with a thiol peptide, glutathione (GSH), showed restoration of the fluorescence intensity as well as absorption maxima to that of pure esculetin. Incubation with other common thiol and non-sulphur amino acids did not show a similar restoration of the photophysical properties of the complex except in the case of cysteine. Mechanistically, it was evident that two molecules of GSH were consumed in reducing the Cu(ii)-esculetin complex, which subsequently split into the copper ion and esculetin. In this process GSH was converted into oxidised GSH (GSSG) as evident from the mass spectroscopy and HPLC studies. The above florescence regeneration behaviour of the copper-esculetin system in the presence of GSH was also observed in the cellular system using Chinese hamster ovary (CHO) as model cells. In conclusion, these studies may find application in developing sensors for detecting the cellular thiol level.


Subject(s)
Copper/chemistry , Sulfhydryl Compounds/chemistry , Umbelliferones/chemistry , Animals , Biosensing Techniques , CHO Cells , Cricetinae , Cricetulus , Glutathione/chemistry , Ions , Mass Spectrometry , Molecular Structure , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...