Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cureus ; 16(4): e58347, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38756302

ABSTRACT

Clinicians should be well-versed in the anatomy, variations, and teeth anomalies. Developmental disturbances of the teeth can lead to alterations in size, shape, number, structure, and eruption of the teeth. Developmental disturbances can lead to germination, fusion, concrescence, dilaceration, talons, cusps, dens in dente, etc. Protostylid, an additional cusp on the buccal aspect of the maxillary molar, which is a rare clinical finding, can lead to plaque accumulation, making oral hygiene maintenance difficult. This leads to clinical attachment loss and bone loss. This condition may often go undiagnosed. It should be diagnosed to prevent further complications. This case has been reported to make clinicians aware of the importance of diagnosing the case at the earliest possible time so that complications can be prevented and management is easier. From the perspective of forensic dentistry, this morphological feature, though uncommon, may be useful for the classification and identification of victims in mass causalities and bite marks on bodies or inanimate objects. This is one of the rarest cases of protostylids reported to date. This may not only pose a significant problem in endodontic therapy due to morphological alterations in root canals and periodontal therapy due to grove formation leading to an inability to maintain a plaque-free area (bone loss) but also be of very significant interest from the perspective of forensic dentistry.

2.
Mol Plant Microbe Interact ; 37(3): 232-238, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38240672

ABSTRACT

Flavonoids are major plant secondary metabolites that provide defense against several insect pests. Previously, it has been shown that sorghum (Sorghum bicolor) flavonoids are required for providing resistance to fall armyworm (FAW; Spodoptera frugiperda), which is an important chewing insect pest on several crops. We demonstrate here the role of FAW oral cues in modulating sorghum flavonoid defenses. While feeding, chewing insects release two kinds of oral cues: oral secretions (OS)/regurgitant and saliva. Our results indicate that FAW OS induced the expression of genes related to flavonoid biosynthesis and total flavonoids, thereby enhancing sorghum's defense against FAW larvae. Conversely, FAW saliva suppressed the flavonoid-based defenses and promoted FAW caterpillar growth, independent of the FAW salivary component, glucose oxidase (GOX). Thus, we infer that different oral cues in FAW may have contrasting roles in altering sorghum defenses. These findings expand our understanding of the precise modes of action of caterpillar oral cues in modulating plant defenses and help in designing novel pest management strategies against FAW in this vital cereal crop. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Saliva , Sorghum , Animals , Spodoptera , Herbivory , Edible Grain , Larva , Zea mays/genetics , Flavonoids
3.
Curr Opin Insect Sci ; 57: 101038, 2023 06.
Article in English | MEDLINE | ID: mdl-37105496

ABSTRACT

Globally, aphids cause immense economic damage to several crop plants. In addition, aphids vector several plant viral diseases that accelerate crop yield losses. While feeding, aphids release saliva that contains effectors, which modulate plant defense responses. Although there are many studies that describe the mechanisms that contribute to dicot plant-aphid interactions, our understanding of monocot crop defense mechanisms against aphids is limited. In this review, we focus on the interactions between monocot crops and aphids and report the recently characterized aphid effectors and their functions in aphid adaptation to plant immunity. Recent studies on plant defense against aphids in monocot-resistant and -tolerant crop lines have exploited various 'omic' approaches to understand the roles of early signaling molecules, phytohormones, and secondary metabolites in plant response to aphid herbivory. Unraveling key regulatory mechanisms underlying monocot crop resistance to aphids will lead to deeper understanding of sap-feeding insect management strategies for increased food security and sustainable agriculture.


Subject(s)
Aphids , Animals , Aphids/physiology , Crops, Agricultural , Adaptation, Physiological , Acclimatization
4.
Water Environ Res ; 95(1): e10828, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36594542

ABSTRACT

In the present work, the degradation of magenta dye has been investigated using ultrasonic (US) and ultraviolet (UV) irradiation at a laboratory scale. Additionally, the investigation was conducted at a semi-pilot scale by employing hydrodynamic cavitation and a novel air-marble cavitation reactor. Initially, optimization studies such as the effect of initial dye concentration and catalyst loading of TiO2 and MnO2 followed by the effect of combined catalyst loading (TiO2 /MnO2 ) on the extent of degradation have been studied at a capacity of 3 L. It was observed that the US irradiation results in 87.1% and 68.2% of degradation, whereas the UV irradiation results in 79.8% and 56.4% extent of degradation at 1 g/l of TiO2 and 0.8 g/l of MnO2 , respectively. The maximum degradation was 92.1% at the combined loading of 0.6 g/l (1:0.8; TiO2 :MnO2 ) using US irradiation with a capacity of 3 L and 81.3% using a hydrodynamic cavitation reactor with a semi-pilot scale capacity of 7 L. The chemical oxygen demand (COD) analysis also showed the highest COD removal of 92% at a small scale using the US irradiation and 76% at a semi-pilot scale using hydrodynamic cavitation. On a small scale, the cost of a US/TiO2 + MnO2 treatment scheme is US$ 0.01/L, whereas on a semi-pilot scale using HC/TiO2 + MnO2 , the cost is US$ 0.04/L. Both of these treatment schemes offer viable pathways for degradation based on energy and economic assessments. Overall, the current work has clearly demonstrated the effectiveness of the cavitational reactor for the efficient degradation of magenta dye from lab to semi-pilot scale operation. PRACTITIONER POINTS: Small-scale dye containing wastewater treatment using ultrasound and ultraviolet irradiation Combined use of catalysts at large-scale operations with novel cavitation techniques Novel cavitation techniques studied for dye degradation. Energy efficiency and cost analysis evaluated for AOPs studies.


Subject(s)
Manganese Compounds , Rosaniline Dyes , Oxides
5.
Front Plant Sci ; 13: 1019266, 2022.
Article in English | MEDLINE | ID: mdl-36507437

ABSTRACT

Plants undergo dynamic metabolic changes at the cellular level upon insect infestation to better defend themselves. Phenylpropanoids, a hub of secondary plant metabolites, encompass a wide range of compounds that can contribute to insect resistance. Here, the role of sorghum (Sorghum bicolor) phenylpropanoids in providing defense against the chewing herbivore, fall armyworm (FAW), Spodoptera frugiperda, was explored. We screened a panel of nested association mapping (NAM) founder lines against FAW and identified SC1345 and Ajabsido as most resistant and susceptible lines to FAW, respectively, compared to reference parent, RTx430. Gene expression and metabolomic studies suggested that FAW feeding suppressed the expression level of genes involved in monolignol biosynthetic pathway and their associated phenolic intermediates at 10 days post infestation. Further, SC1345 genotype displayed elevated levels of flavonoid compounds after FAW feeding for 10 days, suggesting a diversion of precursors from lignin biosynthesis to the flavonoid pathway. Additionally, bioassays with sorghum lines having altered levels of flavonoids provided genetic evidence that flavonoids are crucial in providing resistance against FAW. Finally, the application of FAW regurgitant elevated the expression of genes associated with the flavonoid pathway in the FAW-resistant SC1345 genotype. Overall, our study indicates that a dynamic regulation of the phenylpropanoid pathway in sorghum plants imparts resistance against FAW.

SELECTION OF CITATIONS
SEARCH DETAIL
...