Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Struct ; 1241: 130665, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34007088

ABSTRACT

SARS-CoV-2 are enveloped positive-stranded RNA viruses that replicate in the cytoplasm. It relies on the fusion of their envelope with the host cell membrane to deliver their nucleocapsid into the host cell. The spike glycoprotein (S) mediates virus entry into cells via the human Angiotensin-converting enzyme 2 (hACE2) protein located on many cell types and tissues' outer surface. This study, therefore, aimed to design and synthesize novel pyrazolone-based compounds as potential inhibitors that would interrupt the interaction between the viral spike protein and the host cell receptor to prevent SARS-CoV 2 entrance into the cell. A series of pyrazolone compounds as potential SARS-CoV-2 inhibitors were designed and synthesized. Employing computational techniques, the inhibitory potentials of the designed compounds against both spike protein and hACE2 were evaluated. Results of the binding free energy from the in-silico analysis, showed that three compounds (7i, 7k and 8f) and six compounds (7b, 7h, 7k, 8d, 8g, and 8h) showed higher and better binding high affinity to SARS-CoV-2 Sgp and hACE-2, respectively compared to the standard drugs cefoperazone (CFZ) and MLN-4760. Furthermore, the outcome of the structural analysis of the two proteins upon binding of the inhibitors showed that the two proteins (SARS-CoV-2 Sgp and hACE-2) were stable, and the structural integrity of the proteins was not compromised. This study suggests pyrazolone-based compounds might be potent blockers of the viral entry into the host cells.

2.
Curr Med Chem ; 28(33): 6805-6845, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-33749549

ABSTRACT

Chalcones are an interesting class of compounds endowed with a plethora of biological activities beneficial to human health. These chemotypes have continued to attract increased research attention over the years; hence, numerous natural and synthetic chalcones have found with interesting anticancer activities through the inhibition of various molecular targets including ABCG2, BCRP, P-glycoprotein, 5α-reductase, Androgen Receptor (AR), Histone Deacetylases (HDAC), Sirtuin 1, proteasome, Vascular Endothelial Growth Factor (VEGF), Cathepsin-K, tubulin, CDC25B phosphatase, Topoisomerase, EBV, NF-κB, mTOR, BRAF, and Wnt/ß-catenin. Moreover, the study of intrinsic mechanisms of action, particularly relating to specific cellular pathways and modes of engagement with molecular targets, may help medicinal chemists to develop more effective, selective, and cost-effective chalcone-based anticancer drugs. This review, therefore, sheds light on the effect of structural variations on the anticancer potency of chalcone hybrids reported in 2018-2019 alongside their mechanism of action, molecular targets, and potential impacts on effective cancer chemotherapy.


Subject(s)
Antineoplastic Agents , Chalcones , Antineoplastic Agents/pharmacology , Chalcones/pharmacology , Humans , Neoplasms/drug therapy , Structure-Activity Relationship
3.
J Org Chem ; 85(12): 8221-8229, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32406237

ABSTRACT

A novel green and efficient catalyst-free, mild one-pot, multicomponent synthetic strategy has been developed to construct substituted 3,4-dihydro-2H-benzo[b][1,4]oxazine. This reaction proceeds via in situ formation of Schiff-base followed by base mediated alkylation with phenacyl bromide/substituted phenacyl bromide, finally leading to intramolecular cyclization to give a mixture of diastereomers with excellent diastereoselectivity (up to dr = 99:1), which were isolated as a single diastereomer in moderate to excellent yields (41-92%). Besides, this new versatile methodology provides a wide scope for the synthesis of different functionally substituted benzoxazine scaffolds and can be further exploited as building blocks for the synthesis of multifaceted molecular structures, especially for pharmaceutical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...