Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Med ; 13(3)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38337427

ABSTRACT

Prostate cancer liver metastasis (PCLM), seen in upwards of 25% of metastatic castration-resistant PC (mCRPC) patients, is the most lethal site of mCRPC with a median overall survival of 10-14 months. Despite its ominous prognosis and anticipated rise in incidence due to longer survival with contemporary therapy, PCLM is understudied. This review aims to summarize the existing literature regarding the risk factors associated with the development of PCLM, and to identify areas warranting further research. A literature search was conducted through Ovid MEDLINE from 2000 to March 2023. Relevant subject headings and text words were used to capture the following concepts: "Prostatic Neoplasms", "Liver Neoplasms", and "Neoplasm Metastasis". Citation searching identified additional manuscripts. Forty-one studies were retained for detailed analysis. The clinical risk factors for visceral/liver metastasis included <70 years, ≥T3 tumor, N1 nodal stage, de novo metastasis, PSA >20 ng/mL, and a Gleason score >8. Additional risk factors comprised elevated serum AST, LDH or ALP, decreased Hb, genetic markers like RB1 and PTEN loss, PIK3CB and MYC amplification, as well as numerous PC treatments either acting directly or indirectly through inducing liver injury. Further research regarding predictive factors, early detection strategies, and targeted therapies for PCLM are critical for improving patient outcomes.

2.
Genes (Basel) ; 14(9)2023 09 07.
Article in English | MEDLINE | ID: mdl-37761908

ABSTRACT

Up to 30% of breast cancer (BC) patients will develop distant metastases (DM), for which there is no cure. Here, statistical and machine learning (ML) models were developed to estimate the risk of site-specific DM following local-regional therapy. This retrospective study cohort included 175 patients diagnosed with invasive BC who later developed DM. Clinicopathological information was collected for analysis. Outcome variables were the first site of metastasis (brain, bone or visceral) and the time interval (months) to developing DM. Multivariate statistical analysis and ML-based multivariable gradient boosting machines identified factors associated with these outcomes. Machine learning models predicted the site of DM, demonstrating an area under the curve of 0.74, 0.75, and 0.73 for brain, bone and visceral sites, respectively. Overall, most patients (57%) developed bone metastases, with increased odds associated with estrogen receptor (ER) positivity. Human epidermal growth factor receptor-2 (HER2) positivity and non-anthracycline chemotherapy regimens were associated with a decreased risk of bone DM, while brain metastasis was associated with ER-negativity. Furthermore, non-anthracycline chemotherapy alone was a significant predictor of visceral metastasis. Here, clinicopathologic and treatment variables used in ML prediction models predict the first site of metastasis in BC. Further validation may guide focused patient-specific surveillance practices.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Retrospective Studies , Breast , Brain , Machine Learning
3.
Oncologist ; 28(12): 1020-1033, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37302801

ABSTRACT

BACKGROUND: Patients diagnosed with cancer are frequent users of the emergency department (ED). While many visits are unavoidable, a significant portion may be potentially preventable ED visits (PPEDs). Cancer treatments have greatly advanced, whereby patients may present with unique toxicities from targeted therapies and are often living longer with advanced disease. Prior work focused on patients undergoing cytotoxic chemotherapy, and often excluded those on supportive care alone. Other contributors to ED visits in oncology, such as patient-level variables, are less well-established. Finally, prior studies focused on ED diagnoses to describe trends and did not evaluate PPEDs. An updated systematic review was completed to focus on PPEDs, novel cancer therapies, and patient-level variables, including those on supportive care alone. METHODS: Three online databases were used. Included publications were in English, from 2012-2022, with sample sizes of ≥50, and reported predictors of ED presentation or ED diagnoses in oncology. RESULTS: 45 studies were included. Six studies highlighted PPEDs with variable definitions. Common reasons for ED visits included pain (66%) or chemotherapy toxicities (69.1%). PPEDs were most frequent amongst breast cancer patients (13.4%) or patients receiving cytotoxic chemotherapy (20%). Three manuscripts included immunotherapy agents, and only one focused on end-of-life patients. CONCLUSION: This updated systematic review highlights variability in oncology ED visits during the last decade. There is limited work on the concept of PPEDs, patient-level variables and patients on supportive care alone. Overall, pain and chemotherapy toxicities remain key drivers of ED visits in cancer patients. Further work is needed in this realm.


Subject(s)
Emergency Service, Hospital , Neoplasms , Humans , Neoplasms/drug therapy , Patients , Pain , Retrospective Studies
4.
Sci Rep ; 12(1): 9690, 2022 06 11.
Article in English | MEDLINE | ID: mdl-35690630

ABSTRACT

Complete pathological response (pCR) to neoadjuvant chemotherapy (NAC) is a prognostic factor for breast cancer (BC) patients and is correlated with improved survival. However, pCR rates are variable to standard NAC, depending on BC subtype. This study investigates quantitative digital histopathology coupled with machine learning (ML) to predict NAC response a priori. Clinicopathologic data and digitized slides of BC core needle biopsies were collected from 149 patients treated with NAC. The nuclei within the tumor regions were segmented on the histology images of biopsy samples using a weighted U-Net model. Five pathomic feature subsets were extracted from segmented digitized samples, including the morphological, intensity-based, texture, graph-based and wavelet features. Seven ML experiments were conducted with different feature sets to develop a prediction model of therapy response using a gradient boosting machine with decision trees. The models were trained and optimized using a five-fold cross validation on the training data and evaluated using an unseen independent test set. The prediction model developed with the best clinical features (tumor size, tumor grade, age, and ER, PR, HER2 status) demonstrated an area under the ROC curve (AUC) of 0.73. Various pathomic feature subsets resulted in models with AUCs in the range of 0.67 and 0.87, with the best results associated with the graph-based and wavelet features. The selected features among all subsets of the pathomic and clinicopathologic features included four wavelet and three graph-based features and no clinical features. The predictive model developed with these features outperformed the other models, with an AUC of 0.90, a sensitivity of 85% and a specificity of 82% on the independent test set. The results demonstrated the potential of quantitative digital histopathology features integrated with ML methods in predicting BC response to NAC. This study is a step forward towards precision oncology for BC patients to potentially guide future therapies.


Subject(s)
Breast Neoplasms , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biopsy , Breast Neoplasms/pathology , Female , Humans , Machine Learning , Neoadjuvant Therapy/methods , Precision Medicine , Retrospective Studies
5.
Curr Oncol ; 28(6): 4298-4316, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34898544

ABSTRACT

BACKGROUND: Evaluating histologic grade for breast cancer diagnosis is standard and associated with prognostic outcomes. Current challenges include the time required for manual microscopic evaluation and interobserver variability. This study proposes a computer-aided diagnostic (CAD) pipeline for grading tumors using artificial intelligence. METHODS: There were 138 patients included in this retrospective study. Breast core biopsy slides were prepared using standard laboratory techniques, digitized, and pre-processed for analysis. Deep convolutional neural networks (CNNs) were developed to identify the regions of interest containing malignant cells and to segment tumor nuclei. Imaging-based features associated with spatial parameters were extracted from the segmented regions of interest (ROIs). Clinical datasets and pathologic biomarkers (estrogen receptor, progesterone receptor, and human epidermal growth factor 2) were collected from all study subjects. Pathologic, clinical, and imaging-based features were input into machine learning (ML) models to classify histologic grade, and model performances were tested against ground-truth labels at the patient-level. Classification performances were evaluated using receiver-operating characteristic (ROC) analysis. RESULTS: Multiparametric feature sets, containing both clinical and imaging-based features, demonstrated high classification performance. Using imaging-derived markers alone, the classification performance demonstrated an area under the curve (AUC) of 0.745, while modeling these features with other pathologic biomarkers yielded an AUC of 0.836. CONCLUSION: These results demonstrate an association between tumor nuclear spatial features and tumor grade. If further validated, these systems may be implemented into pathology CADs and can assist pathologists to expeditiously grade tumors at the time of diagnosis and to help guide clinical decisions.


Subject(s)
Breast Neoplasms , Artificial Intelligence , Biomarkers , Breast Neoplasms/diagnostic imaging , Female , Humans , Neural Networks, Computer , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...