Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 3244, 2024 02 08.
Article in English | MEDLINE | ID: mdl-38332164

ABSTRACT

Target identification is a crucial step in elucidating the mechanisms by which functional food components exert their functions. Here, we identified the G-protein-coupled bile acid receptor 1 (GPBAR1, also known as TGR5) as a target of the triterpenoid mogrol, a class of aglycone mogroside derivative from Siraitia grosvenorii. Mogrol, but not mogrosides, activated cAMP-response element-mediated transcription in a TGR5-dependent manner. Additionally, mogrol selectively activated TGR5 but not the other bile acid-responsive receptors (i.e., farnesoid X receptor, vitamin D receptor, or muscarinic acetylcholine receptor M3). Several amino acids in TGR5 (L71A2.60, W75AECL1, Q77AECL1, R80AECL1, Y89A3.29, F161AECL2, L166A5.39, Y240A6.51, S247A6.58, Y251A6.62, L262A7.35, and L266A7.39) were found to be important for mogrol-induced activation. Mogrol activated insulin secretion under low-glucose conditions in INS-1 pancreatic ß-cells, which can be inhibited by a TGR5 inhibitor. Similar effects of mogrol on insulin secretion were observed in the isolated mouse islets. Mogrol administration partially but significantly alleviated hyperglycemia in KKAy diabetic mice by increasing the insulin levels without affecting the ß-cell mass or pancreatic insulin content. These results suggest that mogrol stimulates insulin secretion and alleviates hyperglycemia by acting as a TGR5 agonist.


Subject(s)
Diabetes Mellitus, Experimental , Hyperglycemia , Lanosterol , Phenanthrenes , Animals , Mice , Bile Acids and Salts , Diabetes Mellitus, Experimental/metabolism , GTP-Binding Proteins/metabolism , Hyperglycemia/drug therapy , Insulin/metabolism , Insulin Secretion , Lanosterol/analogs & derivatives , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
2.
NPJ Sci Food ; 6(1): 4, 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35031622

ABSTRACT

The identification of molecular targets of bioactive food components is important to understand the mechanistic aspect of their physiological functions. Here, we have developed a screening system that enables us to determine the activation of G protein-coupled receptors (GPCRs) by food components and have identified GPR55 as a target for curcumin. Curcumin activated GPR55 and induced serum-response element- and serum-response factor-mediated transcription, which were inhibited by Rho kinase and GPR55 antagonists. Both the methoxy group and the heptadienone moiety of curcumin were required for GPR55 activation. The F1905.47 residue of GPR55 was important for the interaction with curcumin. The curcumin-induced secretion of glucagon-like peptide-1 in GLUTag cells was inhibited by a GPR55 antagonist. These results indicate that expression screening is a useful system to identify GPCRs as targets of food components and strongly suggest that curcumin activates GPR55 as an agonist, which is involved in the physiological function of curcumin.

SELECTION OF CITATIONS
SEARCH DETAIL
...