Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Internet Res ; 24(4): e35013, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35416782

ABSTRACT

BACKGROUND: The importance of blockchain-based architectures for personal health record (PHR) lies in the fact that they are thought and developed to allow patients to control and at least partly collect their health data. Ideally, these systems should provide the full control of such data to the respective owner. In spite of this importance, most of the works focus more on describing how blockchain models can be used in a PHR scenario rather than whether these models are in fact feasible and robust enough to support a large number of users. OBJECTIVE: To achieve a consistent, reproducible, and comparable PHR system, we build a novel ledger-oriented architecture out of a permissioned distributed network, providing patients with a manner to securely collect, store, share, and manage their health data. We also emphasize the importance of suitable ledgers and smart contracts to operate the blockchain network as well as discuss the necessity of standardizing evaluation metrics to compare related (net)works. METHODS: We adopted the Hyperledger Fabric platform to implement our blockchain-based architecture design and the Hyperledger Caliper framework to provide a detailed assessment of our system: first, under workload, ranging from 100 to 2500 simultaneous record submissions, and second, increasing the network size from 3 to 13 peers. In both experiments, we used throughput and average latency as the primary metrics. We also created a health database, a cryptographic unit, and a server to complement the blockchain network. RESULTS: With a 3-peer network, smart contracts that write on the ledger have throughputs, measured in transactions per second (tps) in an order of magnitude close to 102 tps, while those contracts that only read have rates close to 103 tps. Smart contracts that write also have latencies, measured in seconds, in an order of magnitude close to 101 seconds, while that only read have delays close to 100 seconds. In particular, smart contracts that retrieve, list, and view history have throughputs varying, respectively, from 1100 tps to 1300 tps, 650 tps to 750 tps, and 850 tps to 950 tps, impacting the overall system response if they are equally requested under the same workload. Varying the network size and applying an equal fixed load, in turn, writing throughputs go from 102 tps to 101 tps and latencies go from 101 seconds to 102 seconds, while reading ones maintain similar values. CONCLUSIONS: To the best of our knowledge, we are the first to evaluate, using Hyperledger Caliper, the performance of a PHR blockchain architecture and the first to evaluate each smart contract separately. Nevertheless, blockchain systems achieve performances far below what the traditional distributed databases achieve, indicating that the assessment of blockchain solutions for PHR is a major concern to be addressed before putting them into a real production.


Subject(s)
Blockchain , Health Records, Personal , Data Management , Delivery of Health Care , Humans
2.
Front Physiol ; 12: 725218, 2021.
Article in English | MEDLINE | ID: mdl-34899371

ABSTRACT

A classic method to evaluate autonomic dysfunction is through the evaluation of heart rate variability (HRV). HRV provides a series of coefficients, such as Standard Deviation of n-n intervals (SDNN) and Root Mean Square of Successive Differences (RMSSD), which have well-established physiological associations. However, using only electrocardiogram (ECG) signals, it is difficult to identify proper autonomic activity, and the standard techniques are not sensitive and robust enough to distinguish pure autonomic modulation in heart dynamics from cardiac dysfunctions. In this proof-of-concept study we propose the use of Poincaré mapping and Recurrence Quantification Analysis (RQA) to identify and characterize stochasticity and chaoticity dynamics in ECG recordings. By applying these non-linear techniques in the ECG signals recorded from a set of Parkinson's disease (PD) animal model 6-hydroxydopamine (6-OHDA), we showed that they present less variability in long time epochs and more stochasticity in short-time epochs, in their autonomic dynamics, when compared with those of the sham group. These results suggest that PD animal models present more "rigid heart rate" associated with "trembling ECG" and bradycardia, which are direct expressions of Parkinsonian symptoms. We also compared the RQA factors calculated from the ECG of animal models using four computational ECG signals under different noise and autonomic modulatory conditions, emulating the main ECG features of atrial fibrillation and QT-long syndrome.

3.
Sci Rep ; 9(1): 8965, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31222185

ABSTRACT

After Alzheimer, Parkinson disease (PD) is the most frequently occurring progressive, degenerative neurological disease. It affects both sympathetic and parasympathetic nervous systems in a variable fashion. Cardiovascular symptoms are present in almost all stages of PD and narrower heart rate variability is the earliest sign. Administration of Levodopa to PD patients has proven to provide some degree of neurological protection. This drug, however, causes side effects including nausea and vomiting, lessened by the administration of domperidone. Autopsies in PD patients led some researchers to suggest the involvement of the ventricular arrhythmia induced by domperidone. The aim of the present study was to determine the impact of the adjusted human maximal dose of domperidone, on cardiological features of Wistar rats. domperidone was administered to both 6-hydroxydopamine Parkinsonism models and regular Wistar rats. Quantitative analysis of ranges of heart beat variation showed significant abnormal distribution in both groups receiving domperidone as compared with respective sham counterparts. However, qualitative analysis of Poincaré plots showed that 6-hydroxydopamine Parkinsonism models receiving domperidone had the narrowest full range of heart beat and the worst distribution heart beat ranges as compared with all study groups corroborating with previous suggestion that domperidone administration to PD patients is likely to play a role in sudden unexpected death in this group of patients.


Subject(s)
Cardiovascular Diseases/etiology , Cardiovascular Diseases/physiopathology , Domperidone/pharmacology , Dopamine Antagonists/pharmacology , Oxidopamine/adverse effects , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/complications , Animals , Behavior, Animal , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/drug therapy , Disease Models, Animal , Domperidone/administration & dosage , Domperidone/adverse effects , Dopamine Antagonists/administration & dosage , Dopamine Antagonists/adverse effects , Electrocardiography , Heart Rate , Humans , Immunohistochemistry , Male , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...