Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2308318, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958510

ABSTRACT

Rechargeable Ca batteries offer the advantages of high energy density, low cost, and earth-abundant constituents, presenting a viable alternative to lithium-ion batteries. However, using polymer electrolytes in practical Ca batteries is not often reported, despite its potential to prevent leakage and preserve battery flexibility. Herein, a Ca(BH4)2-based gel-polymer electrolyte (GPE) is prepared from Ca(BH4)2 and poly(tetrahydrofuran) (pTHF) and tested its performance in Ca batteries. The electrolyte demonstrates excellent stability against Ca-metal anodes and high ionic conductivity. The results of infrared spectroscopy and 1H and 11B NMR indicate that the terminal ─OH groups of pTHF reacted with BH4 - anions to form B─H─(pTHF)3 moieties, achieving cross-linking and solidification. Cyclic voltammetry measurements indicate the occurrence of reversible Ca plating/stripping. To improve the performance at high current densities, the GPE is supplemented with LiBH4 to achieve a lower overpotential in the Ca plating/stripping process. An all-solid-state Ca-metal battery with a dual-cation (Ca2+ and Li+) GPE, a Ca-metal anode, and a Li4Ti5O12 cathode sustained >200 cycles, confirming their feasibility. The results pave the way for further developing lithium salt-free Ca batteries by developing electrolyte salts with high oxidation stability and optimal electrochemical properties.

2.
Sci Rep ; 11(1): 7563, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33824357

ABSTRACT

High-energy-density and low-cost calcium (Ca) batteries have been proposed as 'beyond-Li-ion' electrochemical energy storage devices. However, they have seen limited progress due to challenges associated with developing electrolytes showing reductive/oxidative stabilities and high ionic conductivities. This paper describes a calcium monocarborane cluster salt in a mixed solvent as a Ca-battery electrolyte with high anodic stability (up to 4 V vs. Ca2+/Ca), high ionic conductivity (4 mS cm-1), and high Coulombic efficiency for Ca plating/stripping at room temperature. The developed electrolyte is a promising candidate for use in room-temperature rechargeable Ca batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...