Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Nutrients ; 14(14)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35889819

ABSTRACT

Regulatory T cells (Tregs) and CD4+/CD25+ T cells play an important role in the suppression of excessive immune responses, homeostasis of immune function, and oral tolerance. In this study, we screened for food-derived polyphenols that induce Tregs in response to retinaldehyde dehydrogenase (RALDH2) activation using macrophage-like THP-1 cells. THP-1 cells were transfected with an EGFP reporter vector whose expression is regulated under the control of mouse Raldh2 promoter and named THP-1 (Raldh2p-EGFP) cells. The THP-1 (Raldh2p-EGFP) cells were treated with 33 polyphenols after inducing their differentiation into macrophage-like cells using phorbol 12-myristate 13-acetate. Of the 33 polyphenols, five (kaempferol, quercetin, morin, luteolin and fisetin) activated Raldh2 promoter activity, and both quercetin and luteolin activated the endogenous Raldh2 mRNA expression and enzymatic activity. Furthermore, these two polyphenols increased transforming growth factor beta 1 and forkhead box P3 mRNA expression, suggesting that they have Treg-inducing ability. Finally, we verified that these polyphenols could induce Tregs in vivo and consequently induce IgA production. Oral administration of quercetin and luteolin increased IgA production in feces of mice. Therefore, quercetin and luteolin can induce Tregs via RALDH2 activation and consequently increase IgA production, suggesting that they can enhance intestinal barrier function.


Subject(s)
Polyphenols , T-Lymphocytes, Regulatory , Aldehyde Oxidoreductases/metabolism , Animals , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Immunoglobulin A/metabolism , Luteolin/pharmacology , Mice , Polyphenols/pharmacology , Quercetin/pharmacology , RNA, Messenger/metabolism
2.
J Med Chem ; 56(5): 1865-77, 2013 Mar 14.
Article in English | MEDLINE | ID: mdl-23391145

ABSTRACT

We have reported that retinoid X receptor (RXR) partial agonist 1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)-1H-benzotriazole-5-carboxylic acid (CBt-PMN, 4a) shows a significant antidiabetes effect in the KK-A(y) type 2 diabetes model mice, with reduced side effects compared to RXR full agonists. To elucidate the mechanism of the RXR partial agonist activity of 4a, we synthesized derivatives of 4a, evaluated their RXR agonist activity, and performed structure-activity relationship analysis. Reporter gene assay revealed that though 6b, which possesses an amino group at the 2-position of 5-carboxybenzimidazole, showed RXR full-agonist activity, compounds 6d and 6e, which possess an oxygen atom and a sulfur atom at the corresponding position, respectively, showed weak RXR agonist activity. On the other hand, 6c, which has a trifluoromethyl group at the corresponding position, acts as an RXR partial agonist, having similar Emax (67 ± 2%) and lower EC50 (15 ± 0 nM) compared to those of 4a (Emax = 75 ± 4%, EC50 = 143 ± 2 nM). A fluorescence polarization assay of cofactor recruitment confirmed that fluorescein-labeled D22 coactivator peptide was less efficiently recruited to RXR by 4a and 6c than by LGD1069 (1), a known RXR full agonist. Electrostatic potential field calculations and computational docking studies suggested that full agonists show an electrostatic attraction, which stabilizes the holo structure and favors coactivator recruitment, between the side chain at the benzimidazole 2-position and the α-carbonyl oxygen of asparagine-306 in helix 4 (H4) of the RXR receptor. However, RXR partial agonists 4a and 6c lack this interaction. Like 4a, 6c showed a significant antidiabetes effect in KK-A(y) type 2 diabetes model mice with reduced levels of the side effects associated with RXR full agonists. These findings should aid the design of new RXR partial agonists as antitype 2 diabetes drug candidates.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacology , Retinoid X Receptors/agonists , Tetrahydronaphthalenes/pharmacology , Triazoles/pharmacology , Animals , COS Cells , Chlorocebus aethiops , Hypoglycemic Agents/chemistry , Mice , Models, Molecular , Molecular Docking Simulation , Retinoid X Receptors/drug effects , Tetrahydronaphthalenes/chemistry , Triazoles/chemistry
3.
ACS Med Chem Lett ; 3(5): 427-32, 2012 May 10.
Article in English | MEDLINE | ID: mdl-24900488

ABSTRACT

Treating insulin resistance and type 2 diabetes in rodents, currently known retinoid X receptor (RXR) agonists induce significant adverse effects. Here we introduce a novel RXR partial agonist CBt-PMN (11b), which shows a potent glucose-lowering effect and improvements of insulin secretion and glucose tolerance without the serious adverse effects caused by RXR full agonists. We suggest that RXR partial agonists may be a new class of antitype 2 diabetes drug candidates.

5.
Bioorg Med Chem Lett ; 20(17): 5139-42, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20656484

ABSTRACT

Retinoid X receptors (RXRs) function as homo- or heterodimers with other nuclear receptors, such as peroxisome proliferator-activated receptors (PPARs), which are targets for treatment of hyperlipidemia and type 2 diabetes, or liver X receptors (LXRs), which are involved in glucose/lipid metabolism. PPAR/RXR or LXR/RXR are known as permissive RXR-heterodimers because they are activated by RXR agonists alone. Interestingly, the pattern of RXR-heterodimer activation is different depending on the RXR agonist structure, but the structure-activity relationship has not been reported. Here we show that modification or replacement of the carboxyl group in the acidic domain of RXR agonists has little or no effect on permissive RXR-heterodimer activation. Phosphonic acid (9), tetrazole (10), and hydroxamic acid (12) analogues were synthesized from the common bromo intermediate 7. Except for 9, these compounds showed RXR full-agonistic activities in the concentration range of 1-10 microM. The order of agonistic activity toward both PPARgamma/RXRalpha and LXRalpha/RXRalpha was the same as it was for RXR, that is, 11>10>12. These results should be useful for the development of RXR agonists with improved bioavailability.


Subject(s)
Retinoid X Receptors/agonists , Dimerization , Dose-Response Relationship, Drug , Models, Molecular , Retinoid X Receptors/chemistry , Retinoid X Receptors/genetics , Retinoid X Receptors/metabolism , Transcriptional Activation
6.
Bioorg Med Chem Lett ; 20(17): 5143-6, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20667726

ABSTRACT

Retinoid X receptor (RXR) agonists are candidate agents for the treatment of metabolic syndrome and type 2 diabetes via activation of peroxisome proliferator-activated receptor (PPAR)/RXR or liver X receptor (LXR)/RXR-heterodimers, which control lipid and glucose metabolism. Reporter gene assays or binding assays with radiolabeled compounds are available for RXR ligand screening, but are unsuitable for high-throughput screening. Therefore, as a first step towards stabilizing a fluorescence polarization (FP) assay system for high-throughput RXR ligand screening, we synthesized fluorescent RXR ligands by modification of the lipophilic domain of RXR ligands with a carbostyril fluorophore, and selected the fluorescent RXR agonist 6-[ethyl(1-isobutyl-2-oxo-4-trifluoromethyl-1,2-dihydroquinolin-7-yl)amino]nicotinic acid 8d for further characterization. Compound 8d showed FP in the presence of RXR and the FP was decreased in the presence of the RXR agonist LGD1069 (2). This compound should be a lead compound for use in high-throughput assay systems for screening RXR ligands.


Subject(s)
Retinoid X Receptors/metabolism , Dimerization , Fluorescence Polarization , Ligands
SELECTION OF CITATIONS
SEARCH DETAIL
...