Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 100(3): 1923-1934, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28088403

ABSTRACT

Ginkgo fruit, an unused byproduct of the ginkgo nut industry, contains antimicrobial compounds known as anacardic acids. Two major cultivars of ginkgo, Kyuju (K) and Tokuro (T), were evaluated for their potential as a feed additive for ruminants. In batch culture, we incubated a mixture of hay and concentrate in diluted rumen fluid with or without 1.6% (fruit equivalent) ginkgo fruit extract. We conducted another series of batch culture studies to determine the dose response of fermentation. We also conducted continuous culture using the rumen simulation technique (RUSITEC) with cultivar K and carried out a pure culture study to monitor the sensitivity of 17 representative rumen bacterial species to ginkgo extract and component phenolics. Although both K and T extracts led to decreased methane and increased propionate production, changes were more apparent with K extract, and were dose-dependent. Total gas production was depressed at doses ≥3.2%, suggesting that 1.6% was the optimal supplementation level. In RUSITEC fermentation supplemented with 1.6% ginkgo K, methane decreased by 53% without affecting total gas or total VFA production, but with decreased acetate and increased propionate. Disappearance of dry matter, neutral detergent fiber, and acid detergent fiber were not affected by ginkgo, but ammonia levels were decreased. Quantitative PCR indicated that the abundance of protozoa, fungi, methanogens, and bacteria related to hydrogen and formate production decreased, but the abundance of bacteria related to propionate production increased. MiSeq analysis (Illumina Inc., San Diego, CA) confirmed these bacterial changes and identified archaeal community changes, including a decrease in Methanobrevibacter and Methanomassiliicoccaceae and an increase in Methanoplanus. Pure culture study results supported the findings for the above bacterial community changes. These results demonstrate that ginkgo fruit can modulate rumen fermentation toward methane mitigation and propionate enhancement via microbial selection.


Subject(s)
Fermentation , Rumen/metabolism , Animal Feed , Animals , Fruit , Ginkgo biloba , Methane/biosynthesis , Microbiota
2.
Org Lett ; 2(23): 3695-7, 2000 Nov 16.
Article in English | MEDLINE | ID: mdl-11073678

ABSTRACT

The synthesis of several phosphaferrocene-oxazolines, members of a new family of planar-chiral ligands, is described. These bidentate P, N-ligands are applied to enantioselective palladium-catalyzed allylic alkylations, for which it is shown that the planar-chirality of the phosphaferrocene, not the chirality of the oxazoline, determines the stereochemical outcome of the reaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...