Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Opt Express ; 31(7): 11864-11884, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37155812

ABSTRACT

An H1 photonic crystal nanocavity (PCN) is based on a single point defect and has eigenmodes with a variety of symmetric features. Thus, it is a promising building block for photonic tight-binding lattice systems that can be used in studies on condensed matter, non-Hermitian and topological physics. However, improving its radiative quality (Q) factor has been considered challenging. Here, we report the design of a hexapole mode of an H1 PCN with a Q factor exceeding 108. We achieved such extremely high-Q conditions by varying only four structural modulation parameters thanks to the C6 symmetry of the mode, despite the need of more complicated optimizations for many other PCNs. Our fabricated silicon H1 PCNs exhibited a systematic change in their resonant wavelengths depending on the spatial shift of the air holes in units of 1 nm. Out of 26 such samples, we found eight PCNs with loaded Q factors over one million. The best sample was of a measured Q factor of 1.2 × 106, and its intrinsic Q factor was estimated to be 1.5 × 106. We examined the difference between the theoretical and experimental performances by conducting a simulation of systems with input and output waveguides and with randomly distributed radii of air holes. Automated optimization using the same design parameters further increased the theoretical Q factor by up to 4.5 × 108, which is two orders of magnitude higher than in the previous studies. We clarify that this striking improvement of the Q factor was enabled by the gradual variation in effective optical confinement potential, which was missing in our former design. Our work elevates the performance of the H1 PCN to the ultrahigh-Q level and paves the way for its large-scale arrays with unconventional functionalities.

2.
Nanotechnology ; 34(13)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36608329

ABSTRACT

A focused ion beam (FIB) can precisely mill samples and freely form any nanostructure even on surfaces with curvature, like a nanowire surface, which are difficult to implement by using conventional fabrication techniques, e.g. electron beam lithography. Thus, this tool is promising for nanofabrication; however, fabrication damage and contamination are critical issues, which deteriorate optical properties. In this work, we investigated the protective performance of Al2O3against the FIB process (especially by a gallium ion). Nanowires were coated with Al2O3as a hard mask to protect them from damage during FIB nanofabrication. To estimate the protective performance, their emission properties by photoluminescence measurement and time-resolved spectroscopy were compared with and without Al2O3coating conditions. From the results, we confirmed that the Al2O3coating protects the nanowires. In addition, the nanowires also showed lasing behavior even after FIB processing had been carried out to implement nanostructures. This indicates that their optical properties are well maintained. Thus, our study proves the usefulness of FIBs for future nanofabrication.

3.
Opt Express ; 29(16): 26082-26092, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34614921

ABSTRACT

Ultrashort-distance optical interconnects are becoming increasingly important due to continuous improvements in servers and high-performance computers. As light sources in such interconnects, directly modulated semiconductor lasers with an ultrasmall active region are promising. In addition, using Si waveguides is important to provide low loss optical links with functions such as wavelength filtering and switching. In this paper, we demonstrate a wafer-scale heterogeneous integration of lambda-scale embedded active-region photonic-crystal (LEAP) lasers and Si waveguides, achieved through precise alignment. We numerically and experimentally demonstrated the coupling design between the LEAP lasers and Si waveguides; it is important to match propagation constants of Si waveguides and wavenumber of the optical cavity modes. The LEAP lasers exhibit an ultralow threshold current of 13.2-µA and 10-Gbit/s direct modulation. We also achieved the first data transmission using an optical link consisting of a LEAP laser, Si waveguide, and photodetector and obtained an averaged eye diagram at a bit rate of 10 Gbit/s with a bias current of 150 µA.

4.
Nano Lett ; 19(11): 8059-8065, 2019 11 13.
Article in English | MEDLINE | ID: mdl-31638818

ABSTRACT

Mid-infrared (MIR) photonics is a developing technology for sensing materials by their characteristic MIR absorptions. Since silicon (Si) is a low-loss material in most of the MIR region, Si photonic structures have been fabricated to guide and confine MIR light, and they allow us to achieve sensitive and integrated sensing devices. However, since the implementation of MIR light sources on Si is still challenging, we propose a thick indium arsenide (InAs) nanowire as an MIR laser that can couple to Si photonic structures with material manipulation. In this study, thick InAs nanowires are grown on an indium phosphide substrate with a self-catalyst vapor-liquid-solid method and transferred to gold-deposited SiO2/Si substrates. Low-temperature microphotoluminescence (PL) spectroscopy shows that InAs nanowires exhibit broad PL peaking at a wavelength of around 2.6 µm (3850 cm-1 in frequency), which corresponds to the bandgap energy of wurtzite InAs. At high optical pump fluences, single InAs nanowire exhibits sharp emission peaks, while their integrated intensity and polarization degree increase abruptly at the threshold pump fluence. These nonlinear behaviors indicate that the MIR lasing action takes place in the InAs nanowire in its cavity mode. Our demonstration of the MIR nanowire laser expands the wavelength coverage and potential application of semiconductor nanowires.

5.
Opt Express ; 26(20): 26598-26617, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30469744

ABSTRACT

Few-cell point-defect photonic crystal (PhC) nanocavities (such as LX and H1 type cavities), have several unique characteristics including an ultra-small mode volume (Vm), a small device footprint advantageous for dense integration, and a large mode spacing advantageous for high spontaneous-emission coupling coefficient (ß), which are promising for energy-efficient densely-integratable on-chip laser light sources enhanced by the cavity QED effect. To achieve this goal, a high quality factor (Q) is essential, but conventional few-cell point-defect cavities do not have a sufficiently high Q. Here we adopt a series of modified designs of LX cavities with a buried heterostructure (BH) multi-quantum-well (MQW) active region that can achieve a high Q while maintaining their original advantages and fabricate current-injection laser devices. We have successfully observed continuous-wave (CW) lasing in InP-based L1, L2, L3 and L5 PhC nanocavities at 23°C with a DC current injection lower than 10 µA and a bias voltage lower than 0.9 V. The active volume is ultra-small while maintaining a sufficiently high confinement factor, which is as low as ~10-15 cm3 for a single-cell (L1) nanocavity. This is the first room-temperature current-injection CW lasing from any types of few-cell point-defect PhC nanocavities (LX or H1 types). Our report marks an important step towards realizing a nanolaser diode with a high cavity-QED effect, which is promising for use with on-chip densely integrated laser sources in photonic networks-on-chip combined with CMOS processors.

6.
Opt Express ; 24(23): 26792-26808, 2016 Nov 14.
Article in English | MEDLINE | ID: mdl-27857409

ABSTRACT

Nanowire-induced SiN photonic crystal (PhC) nanocavities specifically designed for the ultra-violet and visible range are investigated by three-dimensional finite-difference time-domain calculations. As opposed to their silicon PhC counterpart, we find that the formation of nanowire-induced two-dimensional (2D) SiN PhC nanocavities is more challenging because of the low refractive index of SiN. We thus discuss optimization strategies to circumvent such difficulties and we investigate the influence of critical design parameters such as PhC geometry, as well as nanowire geometry and position. We also propose a novel nanowire-induced cavity design based on one-dimensional (1D) nanobeam PhCs. We finally report on nanowire-induced nanocavity designs in 1D (resp. 2D) PhCs presenting quality factors as high as Qc = 5.1 x 104 (resp. Qc = 2.5 x 104 with a mode volume Vm=1.8(λ/nrNW)3 (resp. Vm=5.1(λ/nrNW)3), which show good prospects for light-matter interaction in the near-ultraviolet and visible ranges.

7.
Opt Express ; 24(4): 3441-50, 2016 Feb 22.
Article in English | MEDLINE | ID: mdl-26907003

ABSTRACT

Buried multiple-quantum-well (MQW) 2D photonic crystal cavities (PhC) achieve low non-radiative recombination and high carrier confinement thus making them highly efficient emitters. In this study, we have investigated the lasing characteristics of high-ß(spontaneous emission coupling factor) buried MQW photonic crystal nanocavity lasers to clarify the theoretically-predicted thresholdless operation in high-ß nanolasers. The strong light and carrier confinement and low non-radiative recombination in our nanolasers have enabled us to clearly demonstrate very smooth lasing transition in terms of the light-in vs light-out curve and cavity linewidth. To clarify the thresholdless lasing behavior, we carried out a lifetime measurement and a photon correlation measurement, which also confirmed the predicted behavior. In addition, we systematically investigated the dependence of ß on the detuning frequency, which was in good agreement with a numerical simulation based on the finite-difference time-domain method. This is the first convincing systematic study of nanolasers based on an MQW close to the thresholdless regime.

8.
Opt Express ; 23(23): 30379-92, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26698517

ABSTRACT

An all-optical packet switching using bistable photonic crystal nanocavity memories was demonstrated for the first time. Nanocavity-waveguide coupling systems were configured for 1 × 1, 1 × 2, and 1 × 3 switches for 10-Gb/s optical packet, and they were all operated with an optical bias power of only a few µW. The power is several magnitudes lower than that of previously reported all-optical packet switches incorporating all-optical memories. A theoretical investigation indicated the optimum design for reducing the power consumption even further, and for realizing a higher data-rate capability and higher extinction. A small footprint and integrability are also features of our switches, which make them attractive for constructing an all-optical packet switching subsystem with a view to realizing optical routing on a chip.

9.
Opt Lett ; 39(19): 5780-3, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25360983

ABSTRACT

We report simple systematic hole-shifting rules applicable to any Lx (x:2,3,4,5,…) nanocavity. The rules specify six sets of holes to be tuned with only two or three shift parameters. While keeping the same cavity wavelength and nearly the same mode volume, the new rule increases the Q factor by nearly one order of magnitude compared with an edge-hole-shifted Lx nanocavity. The Q factor of the high-order mode is also greatly increased. This merit is obvious from the maximum experimental Q factors of over 500,000 at L2 and of over 1,000,000 at L3, L4, and L5 achieved in Si photonic crystals.

10.
Opt Express ; 22(23): 28623-34, 2014 Nov 17.
Article in English | MEDLINE | ID: mdl-25402103

ABSTRACT

We demonstrate a small foot print (600 nm wide) 1D silicon photonic crystal electro-optic modulator operating with only a 50 mV swing voltage and 0.1 fJ/bit switching energy at GHz speeds, which are the lowest values ever reported for a silicon electro-optic modulator. A 3 dB extinction ratio is demonstrated with an ultra-low 50 mV swing voltage with a total device energy consumption of 42.8 fJ/bit, which is dominated by the state holding energy. The total energy consumption is reduced to 14.65 fJ/bit for a 300 mV swing voltage while still keeping the switching energy at less than 2 fJ/bit. Under optimum voltage conditions, the device operates with a maximum speed of 3 Gbps with 8 dB extinction ratio, which rises to 11 dB for a 1 Gbps modulation speed.


Subject(s)
Electricity , Electronics/instrumentation , Optical Devices , Photons , Silicon/chemistry , Crystallization , Electric Capacitance , Numerical Analysis, Computer-Assisted , Signal Processing, Computer-Assisted , Spectrum Analysis , Thermodynamics , Time Factors
11.
Opt Express ; 22(12): 14263-74, 2014 Jun 16.
Article in English | MEDLINE | ID: mdl-24977524

ABSTRACT

Silicon-based photonic crystal nanocavities with different lattice pitches were monolithically integrated with a total length of only 200 µm, and were operated as a multi-channel all-optical switch with a large processing density of 42 Tb/s/mm2. A pump light and a signal light were assigned to two cavity modes in each cavity, and in this way all-optical gate switching was achieved in a 25 channel resonant dip with an energy cost in the femtojoule regime. We also demonstrated a wavelength-division multiplexing operation by selecting three neighboring channels, and thus achieved gate switching without inter-channel optical crosstalk. As far as we know, this was the first demonstration of a many-channel all-optical switch that can handle an optical signal with bit-by-bit Gb/s repetition in an integrated photonic crystal chip.

12.
Opt Express ; 21(10): 11877-88, 2013 May 20.
Article in English | MEDLINE | ID: mdl-23736410

ABSTRACT

We experimentally and theoretically clarified that a Fano resonant system based on a coupled optical cavity has better performance when used as an all-optical switch than a single cavity in terms of switching energy, contrast, and operation bandwidth. We successfully fabricated a Fano system consisting of doubly coupled photonic-crystal (PhC) nanocavities, and demonstrated all-optical switching for the first time. A steep asymmetric transmission spectrum was clearly observed, thereby enabling a low-energy and high-contrast switching operation. We achieved the switching with a pump energy of a few fJ, a contrast of more than 10 dB, and an 18 ps switching time window. These levels of performance are actually better than those for Lorentzian resonance in a single cavity. We also theoretically investigated the achievable performance in a well-designed Fano system, which suggested a high contrast for the switching of more than 20 dB in a fJ energy regime.


Subject(s)
Models, Theoretical , Nanotechnology/instrumentation , Refractometry/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Surface Plasmon Resonance/instrumentation , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Photons
13.
Opt Express ; 20(11): 11643-51, 2012 May 21.
Article in English | MEDLINE | ID: mdl-22714150

ABSTRACT

We investigate the spectral linewidth of a monolithic photonic crystal nanocavity laser. The nanocavity laser is based on a buried heterostructure cavity in which an ultra-small InGaAsP active region is embedded in an InP photonic crystal. Although it was difficult to achieve narrow linewidth operation in previously reported photonic crystal nanocavity lasers, we have successfully demonstrated a linewidth of 143.5 MHz, which is far narrower than the cold cavity linewidth and the narrowest value yet reported for nanolasers and photonic crystal lasers. The narrow linewidth is accompanied by a low power consumption and an ultrasmall footprint, thus making this particular laser especially suitable for use as an integrated multi-purpose sensor.


Subject(s)
Ceramics/chemistry , Lasers , Nanotechnology/instrumentation , Equipment Design , Equipment Failure Analysis
14.
Opt Express ; 20(4): 3773-80, 2012 Feb 13.
Article in English | MEDLINE | ID: mdl-22418134

ABSTRACT

We have developed a wavelength-scale embedded active-region photonic-crystal laser using lateral p-i-n structure. Zn diffusion and Si ion implantation are used for p- and n-type doping. Room-temperature continuous-wave lasing behavior is clearly observed from the injection current dependence of the output power, 3dB-bandwidth of the peak, and lasing wavelength. The threshold current is 390 µA and the estimated effective threshold current is 9.4 µA. The output power in output waveguide is 1.82 µW for a 2.0-mA current injection. These results indicate that the embedded active-region structure effectively reduce the thermal resistance. Ultrasmall electrically driven lasers are an important step towards on-chip photonic network applications.

15.
Opt Express ; 19(18): 17669-76, 2011 Aug 29.
Article in English | MEDLINE | ID: mdl-21935134

ABSTRACT

CMOS integrated circuits (IC) usually requires high data bandwidth for off-chip input/output (I/O) data transport with sufficiently low power consumption in order to overcome pin-count limitation. In order to meet future requirements of photonic network interconnect, we propose an optical output device based on an optical injection-locked photonic crystal (PhC) laser to realize low-power and high-speed off-chip interconnects. This device enables ultralow-power operation and is suitable for highly integrated photonic circuits because of its strong light-matter interaction in the PhC nanocavity and ultra-compact size. High-speed operation is achieved by using the optical injection-locking (OIL) technique, which has been shown as an effective means to enhance modulation bandwidth beyond the relaxation resonance frequency limit. In this paper, we report experimental results of the OIL-PhC laser under various injection conditions and also demonstrate 40-Gb/s large-signal direct modulation with an ultralow energy consumption of 6.6 fJ/bit.

16.
Opt Express ; 19(3): 2242-50, 2011 Jan 31.
Article in English | MEDLINE | ID: mdl-21369041

ABSTRACT

We have demonstrated an ultracompact buried heterostructure photonic crystal (PhC) laser, consisting of an InGaAsP-based active region (5.0 x 0.3 x 0.15 µm3) buried in an InP layer. By employing a buried heterostructure with an InP layer, we can greatly improve thermal resistance and carrier confinement. We therefore achieved a low threshold input power of 6.8 µW and a maximum output power in the output waveguide of -10.3 dBm by optical pumping. The output light is effectively coupled to the output waveguide with a high external differential quantum efficiency of 53%. We observed a clear eye opening for a 20-Gbit/s NRZ signal modulation with an absorbed input power of 175.2 µW, resulting in an energy cost of 8.76 fJ/bit. This is the smallest reported energy cost for any type of semiconductor laser.


Subject(s)
Lasers, Semiconductor , Nanotechnology/instrumentation , Telecommunications/instrumentation , Crystallization , Electric Power Supplies , Equipment Design , Equipment Failure Analysis , Microwaves
17.
Opt Express ; 19(4): 3387-95, 2011 Feb 14.
Article in English | MEDLINE | ID: mdl-21369161

ABSTRACT

We have demonstrated an all-optical memory by using InGaAsP/InP buried heterostructure photonic crystal (BH-PhC) lasers. We achieved distinct optical injection locking bistability in an ultra-compact active region (4 × 0.3 × 0.16 µm3) with only 25 µW pump power in the PhC waveguide, which is two orders less than previously reported optical memories based on other bistable semiconductor lasers. Dynamic memory operations were achieved with pump power of 100 µW and switching power of 22 µW and 71 µW in the PhC waveguide. Fast switching times of about 60 ps were achieved. To the authors' best knowledge, this is the first demonstration of PhC laser-based all-optical memory.

18.
Opt Express ; 16(23): 19382-7, 2008 Nov 10.
Article in English | MEDLINE | ID: mdl-19585709

ABSTRACT

We demonstrate all-optical bit memory operation with photonic crystal (PhC) nanocavities based on an InGaAsP substrate with a band gap at a wavelength of about 1.3 microm. The optical bistability is based on a refractive index modulation caused by carrier-plasma dispersion. The operating energy required for switching is only 30 fJ, and the minimum optical bias power for bistability is 40 microW, which is about one hundred times less than that required for laser based bistable memories.


Subject(s)
Crystallization/methods , Information Storage and Retrieval , Optical Devices , Signal Processing, Computer-Assisted/instrumentation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis
19.
Opt Express ; 14(3): 1230-5, 2006 Feb 06.
Article in English | MEDLINE | ID: mdl-19503445

ABSTRACT

We propose an optical flip-flop circuit composed of two-port resonant-tunneling filters based on a two-dimensional photonic crystal slab with a triangular air-hole lattice. This circuit can function as an optical digital circuit that synchronizes input data with a clock. In this report, we demonstrate that this circuit can achieve a fast operating speed with a response time of about 10 ps and a low operating power of 60 mW by employing a two-dimensional FDTD calculation.

20.
Opt Express ; 14(25): 12394-400, 2006 Dec 11.
Article in English | MEDLINE | ID: mdl-19529671

ABSTRACT

We demonstrate ultrasmall five-port channel drop filters (CDFs) based on a two-dimensional photonic crystal slab. We combine seven photonic crystals with different lattice constants and use light reflections at the different photonic crystal boundaries to control the interference process and achieve a high dropping efficiency. We operate the CDFs in two modes; one requires careful control of the interference process, whereas the other does not. The former can output a narrower signal spectrum than the latter, and CDF design is easier with the latter. Both CDFs achieve a high dropping efficiency and can function in the CL-band.

SELECTION OF CITATIONS
SEARCH DETAIL
...