Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 138(23): 234704, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23802973

ABSTRACT

The electrochemical thermodynamics of electrolytes in porous electrodes is qualitatively different from that in the bulk with planar electrodes when the pore size is comparable to the size of the electrolyte ions. In this paper, we discuss the thermodynamics of a two component electrolyte in a porous electrode by using Monte Carlo simulation. We show that electrolyte ions are selectively adsorbed in porous electrodes and the relative concentration of the two components significantly changes as a function of the applied voltage and the pore size. This selectivity is observed not only for the counterions but also for the coions.


Subject(s)
Electrodes , Electrolytes/chemistry , Ions/chemistry , Computer Simulation , Monte Carlo Method , Phase Transition , Porosity , Static Electricity , Surface Properties , Thermodynamics
2.
J Am Chem Soc ; 134(34): 13926-9, 2012 Aug 29.
Article in English | MEDLINE | ID: mdl-22888976

ABSTRACT

Ultrafine Pt nanoparticles were successfully immobilized inside the pores of a metal-organic framework, MIL-101, without aggregation of Pt nanoparticles on the external surfaces of framework by using a "double solvents" method. TEM and electron tomographic measurements clearly demonstrated the uniform three-dimensional distribution of the ultrafine Pt NPs throughout the interior cavities of MIL-101. The resulting Pt@MIL-101 composites represent the first highly active MOF-immobilized metal nanocatalysts for catalytic reactions in all three phases: liquid-phase ammonia borane hydrolysis, solid-phase ammonia borane thermal dehydrogenation, and gas-phase CO oxidation.

3.
J Chem Phys ; 136(9): 094701, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22401462

ABSTRACT

The electrochemical thermodynamics of electrolytes in porous electrodes is qualitatively different from that in the bulk with planar electrodes when the pore size is comparable to the size of the electrolyte ions. In this study, the effect of the ion size asymmetry on the thermodynamics in porous electrodes was studied by using Monte Carlo simulation. We used the electrolyte ions for which the size of the cations and that of anions is different. Due to the asymmetry in the ion size, the ionic structure and the way the surface charge is distributed on the electrode surfaces were found to be qualitatively different in the cathode and in the anode. In particular, for some ranges of applied voltage, the distribution of the surface charge induced on the electrode planes shows inhomogeneity, which is not intrinsic to the structure of the porous electrodes. The transition from the homogeneous to the inhomogeneous distribution of surface charge on changing the voltage is a second order phase transition.

4.
J Am Chem Soc ; 133(31): 11854-7, 2011 Aug 10.
Article in English | MEDLINE | ID: mdl-21751788

ABSTRACT

In this work, with a zeolite-type metal-organic framework as both a precursor and a template and furfuryl alcohol as a second precursor, nanoporous carbon material has been prepared with an unexpectedly high surface area (3405 m(2)/g, BET method) and considerable hydrogen storage capacity (2.77 wt % at 77 K and 1 atm) as well as good electrochemical properties as an electrode material for electric double layer capacitors. The pore structure and surface area of the resultant carbon materials can be tuned simply by changing the calcination temperature.

5.
Inorg Chem ; 48(15): 7389-93, 2009 Aug 03.
Article in English | MEDLINE | ID: mdl-19722696

ABSTRACT

In this paper, two kinds of Ni nanoparticles have been successfully synthesized without and with starch as the "green" protective material and investigated as catalysts for generating hydrogen from ammonia borane (NH(3)BH(3), AB). Experimental investigations have demonstrated that both of the Ni nanoparticles possess high catalytic activities for H(2) generation from aqueous solution of AB. However, the catalytic activities of Ni nanoparticles without starch decrease seriously in the course of the lifetime tests. In contrast, the catalytic activities of the Ni nanoparticles with starch almost keep unchanged even after 240 h. Moreover, the XPS results show that the surface of the Ni nanoparticles in starch solution is still metallic Ni even after 240 h, while that in pure water is nickel oxide. This means that starch can successfully keep the Ni nanoparticles in aqueous solution from the oxidation in air. The present efficient, low-cost, and longtime water/air stable Ni catalyst represents a promising step toward the development of AB as a viable on-board hydrogen storage and supply material.

6.
J Am Chem Soc ; 131(8): 2778-9, 2009 Mar 04.
Article in English | MEDLINE | ID: mdl-19239265

ABSTRACT

Carbon-supported Fe@Pt core-shell nanoparticle (NP) catalysts with Fe cores in different crystal states have been successfully synthesized by a sequential reduction process. Unexpectedly, in contrast to its crystallized counterpart, iron in the amorphous state exerts a distinct and powerful ability as the core for the Fe@Pt NPs. The resultant NPs are far more active for ammonia borane oxidation (by up to 354%) than the commercial Pt/C catalysts. Furthermore, these NPs combine low cost, long-term stability, and easy recovery functions.

7.
J Am Chem Soc ; 130(16): 5390-1, 2008 Apr 23.
Article in English | MEDLINE | ID: mdl-18376833

ABSTRACT

Porous carbon was synthesized by heating the precursor FA within the pores of MOF-5. The resultant carbon displayed a high specific surface area (BET, 2872 m2.g-1) and important hydrogen uptake (2.6 wt % at 760 Torr, -196 degrees C) as well as excellent electrochemical properties as an electrode material for electrochemical double-layered capacitor (EDLC).

9.
Chemphyschem ; 8(13): 1979-87, 2007 Sep 17.
Article in English | MEDLINE | ID: mdl-17705149

ABSTRACT

The crystal structures, electronic, dielectric, and vibrational properties of NaH, Na(2)O and NaOH are systematically investigated by first-principles calculations and the quasiharmonic approximation. The phonon dispersion relations and the phonon density of states of the phases and their thermodynamic functions including the heat capacity, the vibrational enthalpy, and the vibrational entropy are calculated using a direct force-constant method. Based on these results, the dehydrogenation reaction, NaH+NaOH-->H(2)+Na(2)O, is predicted to take place at 528 K, which is in agreement with the experimental observed value.

SELECTION OF CITATIONS
SEARCH DETAIL
...