Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 383(6678): 114-119, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38175895

ABSTRACT

Key innovations are fundamental to biological diversification, but their genetic basis is poorly understood. A recent transition from egg-laying to live-bearing in marine snails (Littorina spp.) provides the opportunity to study the genetic architecture of an innovation that has evolved repeatedly across animals. Individuals do not cluster by reproductive mode in a genome-wide phylogeny, but local genealogical analysis revealed numerous small genomic regions where all live-bearers carry the same core haplotype. Candidate regions show evidence for live-bearer-specific positive selection and are enriched for genes that are differentially expressed between egg-laying and live-bearing reproductive systems. Ages of selective sweeps suggest that live-bearer-specific alleles accumulated over more than 200,000 generations. Our results suggest that new functions evolve through the recruitment of many alleles rather than in a single evolutionary step.


Subject(s)
Biological Evolution , Reproduction , Snails , Viviparity, Nonmammalian , Animals , Haplotypes , Phylogeny , Reproduction/genetics , Selection, Genetic , Snails/genetics , Snails/physiology , Viviparity, Nonmammalian/genetics , Viviparity, Nonmammalian/physiology
2.
Genome Res ; 33(5): 810-823, 2023 May.
Article in English | MEDLINE | ID: mdl-37308293

ABSTRACT

Recombination is a key molecular mechanism that has profound implications on both micro- and macroevolutionary processes. However, the determinants of recombination rate variation in holocentric organisms are poorly understood, in particular in Lepidoptera (moths and butterflies). The wood white butterfly (Leptidea sinapis) shows considerable intraspecific variation in chromosome numbers and is a suitable system for studying regional recombination rate variation and its potential molecular underpinnings. Here, we developed a large whole-genome resequencing data set from a population of wood whites to obtain high-resolution recombination maps using linkage disequilibrium information. The analyses revealed that larger chromosomes had a bimodal recombination landscape, potentially caused by interference between simultaneous chiasmata. The recombination rate was significantly lower in subtelomeric regions, with exceptions associated with segregating chromosome rearrangements, showing that fissions and fusions can have considerable effects on the recombination landscape. There was no association between the inferred recombination rate and base composition, supporting a limited influence of GC-biased gene conversion in butterflies. We found significant but variable associations between the recombination rate and the density of different classes of transposable elements, most notably a significant enrichment of short interspersed nucleotide elements in genomic regions with higher recombination rate. Finally, the analyses unveiled significant enrichment of genes involved in farnesyltranstransferase activity in recombination coldspots, potentially indicating that expression of transferases can inhibit formation of chiasmata during meiotic division. Our results provide novel information about recombination rate variation in holocentric organisms and have particular implications for forthcoming research in population genetics, molecular/genome evolution, and speciation.


Subject(s)
Butterflies , Animals , Butterflies/genetics , Genome , Genomics , Genetics, Population , Recombination, Genetic
3.
Mol Ecol ; 32(6): 1441-1457, 2023 03.
Article in English | MEDLINE | ID: mdl-36433653

ABSTRACT

The term "haplotype block" is commonly used in the developing field of haplotype-based inference methods. We argue that the term should be defined based on the structure of the Ancestral Recombination Graph (ARG), which contains complete information on the ancestry of a sample. We use simulated examples to demonstrate key features of the relationship between haplotype blocks and ancestral structure, emphasizing the stochasticity of the processes that generate them. Even the simplest cases of neutrality or of a "hard" selective sweep produce a rich structure, often missed by commonly used statistics. We highlight a number of novel methods for inferring haplotype structure, based on the full ARG, or on a sequence of trees, and illustrate how they can be used to define haplotype blocks using an empirical data set. While the advent of new, computationally efficient methods makes it possible to apply these concepts broadly, they (and additional new methods) could benefit from adding features to explore haplotype blocks, as we define them. Understanding and applying the concept of the haplotype block will be essential to fully exploit long and linked-read sequencing technologies.


Subject(s)
Algorithms , Models, Genetic , Haplotypes/genetics
4.
Mol Ecol ; 32(3): 560-574, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36336800

ABSTRACT

Migration is typically associated with risk and uncertainty at the population level, but little is known about its cost-benefit trade-offs at the species level. Migratory insects in particular often exhibit strong demographic fluctuations due to local bottlenecks and outbreaks. Here, we use genomic data to investigate levels of heterozygosity and long-term population size dynamics in migratory insects, as an alternative to classical local and short-term approaches such as regional field monitoring. We analyse whole-genome sequences from 97 Lepidoptera species and show that individuals of migratory species have significantly higher levels of genome-wide heterozygosity, a proxy for effective population size, than do nonmigratory species. Also, we contribute whole-genome data for one of the most emblematic insect migratory species, the painted lady butterfly (Vanessa cardui), sampled across its worldwide distributional range. This species exhibits one of the highest levels of genomic heterozygosity described in Lepidoptera (2.95 ± 0.15%). Coalescent modelling (PSMC) shows historical demographic stability in V. cardui, and high effective population size estimates of 2-20 million individuals 10,000 years ago. The study reveals that the high risks associated with migration and local environmental fluctuations do not seem to decrease overall genetic diversity and demographic stability in migratory Lepidoptera. We propose a "compensatory" demographic model for migratory r-strategist organisms in which local bottlenecks are counterbalanced by reproductive success elsewhere within their typically large distributional ranges. Our findings highlight that the boundaries of populations are substantially different for sedentary and migratory insects, and that, in the latter, local and even regional field monitoring results may not reflect whole population dynamics. Genomic diversity patterns may elucidate key aspects of an insect's migratory nature and population dynamics at large spatiotemporal scales.


Subject(s)
Butterflies , Humans , Animals , Butterflies/genetics , Animal Migration , Insecta , Population Density , Genetic Variation/genetics
5.
Genomics ; 114(6): 110481, 2022 11.
Article in English | MEDLINE | ID: mdl-36115505

ABSTRACT

Characterization of gene family expansions and crossing over is crucial for understanding how organisms adapt to the environment. Here, we develop a high-density linkage map and detailed genome annotation of the painted lady butterfly (Vanessa cardui) - a non-diapausing, highly polyphagous species famous for its long-distance migratory behavior and almost cosmopolitan distribution. Our results reveal a complex interplay between regional recombination rate variation, gene duplications and transposable element activity shaping the genome structure of the painted lady. We identify several lineage specific gene family expansions. Their functions are mainly associated with protein and fat metabolism, detoxification, and defense against infection - critical processes for the painted lady's unique life-history. Furthermore, the detailed recombination maps allow us to characterize the regional recombination landscape, data that reveal a strong effect of chromosome size on the recombination rate, a limited impact of GC-biased gene conversion and a positive association between recombination and short interspersed elements.


Subject(s)
Butterflies , Humans , Animals , Butterflies/genetics
6.
G3 (Bethesda) ; 7(12): 3983-3998, 2017 12 04.
Article in English | MEDLINE | ID: mdl-29054864

ABSTRACT

Identification of candidate genes for trait variation in diverging lineages and characterization of mechanistic underpinnings of genome differentiation are key steps toward understanding the processes underlying the formation of new species. Hybrid zones provide a valuable resource for such investigations, since they allow us to study how genomes evolve as species exchange genetic material and to associate particular genetic regions with phenotypic traits of interest. Here, we use whole-genome resequencing of both allopatric and hybridizing populations of the European (Phylloscopus collybita abietinus) and the Siberian chiffchaff (P. tristis)-two recently diverged species which differ in morphology, plumage, song, habitat, and migration-to quantify the regional variation in genome-wide genetic diversity and differentiation, and to identify candidate regions for trait variation. We find that the levels of diversity, differentiation, and divergence are highly heterogeneous, with significantly reduced global differentiation, and more pronounced differentiation peaks in sympatry than in allopatry. This pattern is consistent with regional differences in effective population size and recurrent background selection or selective sweeps reducing the genetic diversity in specific regions prior to lineage divergence, but the data also suggest that postdivergence selection has resulted in increased differentiation and fixed differences in specific regions. We find that hybridization and backcrossing is common in sympatry, and that phenotype is a poor predictor of the genomic composition of sympatric birds. The combination of a differentiation scan approach with identification of fixed differences pinpoint a handful of candidate regions that might be important for trait variation between the two species.


Subject(s)
Biological Evolution , Cell Differentiation/genetics , Genetic Speciation , Selection, Genetic/genetics , Animals , Gene Flow , Genetic Heterogeneity , Genetic Variation , Genetics, Population
7.
Ecol Evol ; 7(7): 2169-2180, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28405281

ABSTRACT

Characterizing patterns of evolution of genetic and phenotypic divergence between incipient species is essential to understand how evolution of reproductive isolation proceeds. Hybrid zones are excellent for studying such processes, as they provide opportunities to assess trait variation in individuals with mixed genetic background and to quantify gene flow across different genomic regions. Here, we combine plumage, song, mtDNA and whole-genome sequence data and analyze variation across a sympatric zone between the European and the Siberian chiffchaff (Phylloscopus collybita abietinus/tristis) to study how gene exchange between the lineages affects trait variation. Our results show that chiffchaff within the sympatric region show more extensive trait variation than allopatric birds, with a large proportion of individuals exhibiting intermediate phenotypic characters. The genomic differentiation between the subspecies is lower in sympatry than in allopatry and sympatric birds have a mix of genetic ancestry indicating extensive ongoing and past gene flow. Patterns of phenotypic and genetic variation also vary between regions within the hybrid zone, potentially reflecting differences in population densities, age of secondary contact, or differences in mate recognition or mate preference. The genomic data support the presence of two distinct genetic clades corresponding to allopatric abietinus and tristis and that genetic admixture is the force underlying trait variation in the sympatric region-the previously described subspecies ("fulvescens") from the region is therefore not likely a distinct taxon. In addition, we conclude that subspecies identification based on appearance is uncertain as an individual with an apparently distinct phenotype can have a considerable proportion of the genome composed of mixed alleles, or even a major part of the genome introgressed from the other subspecies. Our results provide insights into the dynamics of admixture across subspecies boundaries and have implications for understanding speciation processes and for the identification of specific chiffchaff individuals based on phenotypic characters.

8.
Ecol Evol ; 3(3): 655-66, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23532859

ABSTRACT

Characterization of the genetic basis of fitness traits in natural populations is important for understanding how organisms adapt to the changing environment and to novel events, such as epizootics. However, candidate fitness-influencing loci, such as regulatory regions, are usually unavailable in nonmodel species. Here, we analyze sequence data from targeted resequencing of the cis-regulatory regions of three candidate genes for disease resistance (CD74, HSP90α, and LCP1) in populations of the house finch (Carpodacus mexicanus) historically exposed (Alabama) and naïve (Arizona) to Mycoplasma gallisepticum. Our study, the first to quantify variation in regulatory regions in wild birds, reveals that the upstream regions of CD74 and HSP90α are GC-rich, with the former exhibiting unusually low sequence variation for this species. We identified two SNPs, located in a GC-rich region immediately upstream of an inferred promoter site in the gene HSP90α, that were significantly associated with Mycoplasma pathogen load in the two populations. The SNPs are closely linked and situated in potential regulatory sequences: one in a binding site for the transcription factor nuclear NFYα and the other in a dinucleotide microsatellite ((GC)6). The genotype associated with pathogen load in the putative NFYα binding site was significantly overrepresented in the Alabama birds. However, we did not see strong effects of selection at this SNP, perhaps because selection has acted on standing genetic variation over an extremely short time in a highly recombining region. Our study is a useful starting point to explore functional relationships between sequence polymorphisms, gene expression, and phenotypic traits, such as pathogen resistance that affect fitness in the wild.

SELECTION OF CITATIONS
SEARCH DETAIL
...