Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Genom ; 8(2)2022 02.
Article in English | MEDLINE | ID: mdl-35113783

ABSTRACT

There is a growing need for public health and veterinary laboratories to perform whole genome sequencing (WGS) for monitoring antimicrobial resistance (AMR) and protecting the safety of people and animals. With the availability of smaller and more affordable sequencing platforms coupled with well-defined bioinformatic protocols, the technological capability to incorporate this technique for real-time surveillance and genomic epidemiology has greatly expanded. There is a need, however, to ensure that data are of high quality. The goal of this study was to assess the utility of a small benchtop sequencing platform using a multi-laboratory verification approach. Thirteen laboratories were provided the same equipment, reagents, protocols and bacterial reference strains. The Illumina DNA Prep and Nextera XT library preparation kits were compared, and 2×150 bp iSeq i100 chemistry was used for sequencing. Analyses comparing the sequences produced from this study with closed genomes from the provided strains were performed using open-source programs. A detailed, step-by-step protocol is publicly available via protocols.io (https://www.protocols.io/view/iseq-bacterial-wgs-protocol-bij8kcrw). The throughput for this method is approximately 4-6 bacterial isolates per sequencing run (20-26 Mb total load). The Illumina DNA Prep library preparation kit produced high-quality assemblies and nearly complete AMR gene annotations. The Prep method produced more consistent coverage compared to XT, and when coverage benchmarks were met, nearly all AMR, virulence and subtyping gene targets were correctly identified. Because it reduces the technical and financial barriers to generating WGS data, the iSeq platform is a viable option for small laboratories interested in genomic surveillance of microbial pathogens.


Subject(s)
Escherichia coli/genetics , Genome, Bacterial , High-Throughput Nucleotide Sequencing/methods , Listeria/genetics , Salmonella/genetics , Whole Genome Sequencing/methods , Animals , Bacteria/genetics , DNA, Bacterial/genetics , Escherichia coli Infections/microbiology , Foodborne Diseases/microbiology , Gene Library , Genomics , Laboratories , Salmonella Infections/microbiology , Virulence/genetics
2.
mSystems ; 6(5): e0059121, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34698548

ABSTRACT

Xylella fastidiosa (Xf) is a globally distributed plant-pathogenic bacterium. The primary control strategy for Xf diseases is eradicating infected plants; therefore, timely and accurate detection is necessary to prevent crop losses and further pathogen dispersal. Conventional Xf diagnostics primarily relies on quantitative PCR (qPCR) assays. However, these methods do not consider new or emerging variants due to pathogen genetic recombination and sensitivity limitations. We developed and tested a metagenomics pipeline using in-house short-read sequencing as a complementary approach for affordable, fast, and highly accurate Xf detection. We used metagenomics to identify Xf to the strain level in single- and mixed-infected plant samples at concentrations as low as 1 pg of bacterial DNA per gram of tissue. We also tested naturally infected samples from various plant species originating from Europe and the United States. We identified Xf subspecies in samples previously considered inconclusive with real-time PCR (quantification cycle [Cq], >35). Overall, we showed the versatility of the pipeline by using different plant hosts and DNA extraction methods. Our pipeline provides taxonomic and functional information for Xf diagnostics without extensive knowledge of the disease. This pipeline demonstrates that metagenomics can be used for early detection of Xf and incorporated as a tool to inform disease management strategies. IMPORTANCE Destructive Xylella fastidiosa (Xf) outbreaks in Europe highlight this pathogen's capacity to expand its host range and geographical distribution. The current disease diagnostic approaches are limited by a multiple-step process, biases to known sequences, and detection limits. We developed a low-cost, user-friendly metagenomic sequencing tool for Xf detection. In less than 3 days, we were able to identify Xf subspecies and strains in field-collected samples. Overall, our pipeline is a diagnostics tool that could be easily extended to other plant-pathogen interactions and implemented for emerging plant threat surveillance.

SELECTION OF CITATIONS
SEARCH DETAIL
...