Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 249(4966): 228, 1990 Jul 20.
Article in English | MEDLINE | ID: mdl-2374919
2.
Biochem J ; 172(2): 205-18, 1978 May 15.
Article in English | MEDLINE | ID: mdl-666739

ABSTRACT

The present study was undertaken to evaluate quantitatively the turnover of serum triacylglycerol (triglyceride) in the starved rat and to determine whether serum triacylglycerol recycled to liver contributes a significant fraction of the total hepatic triacylglycerol turnover. Serum was labelled in vitro with [3H]trioleoylglycerol (glycerol [3H]trioleate) to provide uniform labelling of all lipoprotein species. By using the curves describing disappearance of isotope from serum and its appearance in liver, rate constants for movement of triacylglycerol out of serum (0.29 min-1) and the uptake of serum triacylglycerol by liver (0.22 min-1) were calculated. The total rate of movement (flux) of triacylglycerol in these processes, the product of rate constant and serum pool size, was calculated to be 0.39 and 0.29 mg/min per 100 g body wt. respectively. A model is postulated for whole-body triacylglycerol metabolism consistent with the present data as well as most observations in the literature. From the model it can be predicted that: (1) the entire turnover of liver triacylglycerol in the starved rat can be accounted for on the basis of contributions from serum non-esterified fatty acid and serum triacylglycerol; (2) the entire turnover of the serum triacylglycerol pool can be accounted for quantitatively on the basis of contributions from intestine and liver; (3) the release rate for triacylglycerol from liver should be 0.34 to 0.35 mg/min per 100 g body wt.; (4) triacylglycerol synthesized by liver from non-esterified fatty acid of serum and by intestine can account quantitatively for the irreversible disposal rate of triacylglycerol from serum.


Subject(s)
Liver/metabolism , Triglycerides/metabolism , Animals , Kinetics , Male , Models, Biological , Rats , Starvation/metabolism , Triglycerides/blood
3.
Biochem J ; 172(2): 219-26, 1978 May 15.
Article in English | MEDLINE | ID: mdl-666740

ABSTRACT

After an intravenous injection of a pulse of [U-14C]palmitate to starved rats, the time-dependent radioactivity profiles were determined in the triacylglycerol (triglyceride) of hepatic microsomal fractions, floating fat, mitochondria and nuclei. The profile of activity in serum gave a value of 0.08 mg/min per 100 g body wt. for the irreversible disposal rate of triacylglycerol from serum. This value, combined with the previously estimated rate of movement of triacylglycerol from serum to liver, and the reported rate from intestine to serum, gave a calculated value of 0.35 mg/min per 100 g body wt. for release rate of triacylglycerol from liver to serum. The rate of release of hepatic triacylglycerol into serum was also measured by the widely used Triton WR-1339 method. The rate obtained with this technique (0.15 mg of triacylglycerol/min per 100 g body wt.) was identical with that reported previously. During the interval from 45 min to 3h after ethanol administration this rate increased to 0.18 mg/min per 100 g body wt. It was concluded that the use of Triton underestimates the true rate of movement of triacylglyerol from liver to serum.


Subject(s)
Liver/metabolism , Triglycerides/metabolism , Animals , Ethanol/pharmacology , Fatty Acids/analysis , Kinetics , Liver/ultrastructure , Microsomes, Liver/metabolism , Polyethylene Glycols , Rats , Starvation/metabolism , Subcellular Fractions/metabolism , Triglycerides/blood
4.
Can J Physiol Pharmacol ; 53(5): 895-902, 1975 Oct.
Article in English | MEDLINE | ID: mdl-1201495

ABSTRACT

Specific activity curves of respired CO2 and of body glucose after intravenous NaH14CO3 as tracer and, in separate experiments, after [U-14C]glucose as tracer were employed to assess rate of interchange of carbon between HCO3 and glucose, and to calculate other rates of input and output for each of these substances. Solution for six rates attending the model was by integrals rather than by curve analysis. Fasting caused a twofold increase in rate of transport of CO2 carbon to glucose. Whereas in fed animals this rate was only 7% of the forward flow from glucose to CO2, it rose to 31% during fasting. Glucose carbon derived from CO2 rose from 3.7 to 20%. As expected, the rates of entry of new glucose to blood, and the conversion rate of glucose to products in body depots and to CO2 were reduced by fasting, whereas, the non-glucose input to CO2 was increased. Fasting was attended by a 20-fold increase in rate of conversion of CO2-derived carbon to hepatic glycogen and a fourfold increase to non-hepatic glycogen. Protein exceeded all whole-body depots for rate of acceptance of such carbon, and total lipids received an appreciable amount, but fasting caused no overall increase for either.


Subject(s)
Carbon Dioxide/metabolism , Gluconeogenesis , Animals , Biological Transport, Active , Blood Glucose/metabolism , Fasting , Glucose/metabolism , Glycogen/biosynthesis , Lipids/biosynthesis , Liver Glycogen/biosynthesis , Male , Mathematics , Models, Biological , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...