Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Regul Toxicol Pharmacol ; 79 Suppl 1: S39-47, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27267172

ABSTRACT

A European Union (EU) regulatory guideline came into effect for all new pharmaceutical products on June 1st, 2015, and for all existing pharmaceutical products on December 1st, 2015. This guideline centers around the use of the Acceptable Daily Exposure (ADE) [synonymous with the Permitted Daily Exposure (PDE)] and operational considerations associated with implementation are outlined here. The EU guidance states that all active pharmaceutical ingredients (API) require an ADE; however, other substances such as starting materials, process intermediates, and cleaning agents may benefit from an ADE. Problems in setting ADEs for these additional substances typically relate to toxicological data limitations precluding the ability to establish a formal ADE. Established methodologies such as occupational exposure limits or bands (OELs or OEBs) and the threshold of toxicological concern (TTC) can be used or adjusted for use as interim ADEs when only limited data are available and until a more formal ADE can be established. Once formal ADEs are derived, it is important that the documents are routinely updated and that these updates are communicated to appropriate stakeholders. Another key operational consideration related to data-poor substances includes the use of maximum daily dose (MDD) in setting cross-contamination limits. The MDD is an important part of the maximum allowable/safe concentration (MAC/MSC) calculation and there are important considerations for its use and definition. Finally, other considerations discussed include operational aspects of setting ADEs for pediatrics, considerations for large molecules, and risk management in shared facilities.


Subject(s)
Drug Industry , No-Observed-Adverse-Effect Level , Occupational Exposure/prevention & control , Occupational Health , Pharmaceutical Preparations , Animals , Dose-Response Relationship, Drug , Drug Industry/legislation & jurisprudence , Drug Industry/standards , Guidelines as Topic , Health Policy , Humans , Occupational Exposure/adverse effects , Occupational Exposure/legislation & jurisprudence , Occupational Exposure/standards , Occupational Health/legislation & jurisprudence , Occupational Health/standards , Pharmaceutical Preparations/classification , Pharmaceutical Preparations/standards , Policy Making , Risk Assessment , Toxicity Tests
2.
Regul Toxicol Pharmacol ; 79 Suppl 1: S19-27, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27233923

ABSTRACT

This manuscript centers on communication with key stakeholders of the concepts and program goals involved in the application of health-based pharmaceutical cleaning limits. Implementation of health-based cleaning limits, as distinct from other standards such as 1/1000th of the lowest clinical dose, is a concept recently introduced into regulatory domains. While there is a great deal of technical detail in the written framework underpinning the use of Acceptable Daily Exposures (ADEs) in cleaning (for example ISPE, 2010; Sargent et al., 2013), little is available to explain how to practically create a program which meets regulatory needs while also fulfilling good manufacturing practice (GMP) and other expectations. The lack of a harmonized approach for program implementation and communication across stakeholders can ultimately foster inappropriate application of these concepts. Thus, this period in time (2014-2017) could be considered transitional with respect to influencing best practice related to establishing health-based cleaning limits. Suggestions offered in this manuscript are intended to encourage full and accurate communication regarding both scientific and administrative elements of health-based ADE values used in pharmaceutical cleaning practice. This is a large and complex effort that requires: 1) clearly explaining key terms and definitions, 2) identification of stakeholders, 3) assessment of stakeholders' subject matter knowledge, 4) formulation of key messages fit to stakeholder needs, 5) identification of effective and timely means for communication, and 6) allocation of time, energy, and motivation for initiating and carrying through with communications.


Subject(s)
Drug Industry , Interdisciplinary Communication , No-Observed-Adverse-Effect Level , Occupational Exposure/prevention & control , Occupational Health , Pharmaceutical Preparations , Animals , Cooperative Behavior , Drug Industry/legislation & jurisprudence , Drug Industry/standards , Guidelines as Topic , Health Policy , Humans , Occupational Exposure/adverse effects , Occupational Exposure/legislation & jurisprudence , Occupational Exposure/standards , Occupational Health/legislation & jurisprudence , Occupational Health/standards , Organizational Objectives , Pharmaceutical Preparations/classification , Pharmaceutical Preparations/standards , Policy Making , Program Development , Risk Assessment , Toxicity Tests
3.
Regul Toxicol Pharmacol ; 79 Suppl 1: S48-56, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27233925

ABSTRACT

The Acceptable Daily Exposure (ADE) derived for pharmaceutical manufacturing is a health-based limit used to ensure that medicines produced in multi-product facilities are safe and are used to validate quality processes. Core to ADE derivation is selecting appropriate point(s) of departure (PoD), i.e., the starting dose of a given dataset that is used in the calculation of the ADE. Selecting the PoD involves (1) data collection and hazard characterization, (2) identification of "critical effects", and (3) a dose-response assessment including the determination of the no-observed-adverse-effect-level (NOAEL) or lowest-observed-adverse-effect-level (LOAEL), or calculating a benchmark dose (BMD) level. Compared to other classes of chemicals, active pharmaceutical ingredients (APIs) are well-characterized and have unique, rich datasets that must be considered when selecting the PoD. Dataset considerations for an API include therapeutic/pharmacological effects, particularities of APIs for different indications and routes of administration, data gaps during drug development, and sensitive subpopulations. Thus, the PoD analysis must be performed by a qualified toxicologist or other expert who also understands the complexities of pharmaceutical datasets. In addition, as the pharmaceutical industry continues to evolve new therapeutic principles, the science behind PoD selection must also evolve to ensure state-of-the-science practices and resulting ADEs.


Subject(s)
Drug Industry , No-Observed-Adverse-Effect Level , Occupational Exposure/prevention & control , Occupational Health , Pharmaceutical Preparations , Animals , Benchmarking , Dose-Response Relationship, Drug , Drug Industry/legislation & jurisprudence , Drug Industry/standards , Guidelines as Topic , Health Policy , Humans , Occupational Exposure/adverse effects , Occupational Exposure/legislation & jurisprudence , Occupational Exposure/standards , Occupational Health/legislation & jurisprudence , Occupational Health/standards , Pharmaceutical Preparations/classification , Pharmaceutical Preparations/standards , Pharmacokinetics , Policy Making , Risk Assessment , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...