Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2434, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509081

ABSTRACT

Extracellular electron transfer (EET) via microbial nanowires drives globally-important environmental processes and biotechnological applications for bioenergy, bioremediation, and bioelectronics. Due to highly-redundant and complex EET pathways, it is unclear how microbes wire electrons rapidly (>106 s-1) from the inner-membrane through outer-surface nanowires directly to an external environment despite a crowded periplasm and slow (<105 s-1) electron diffusion among periplasmic cytochromes. Here, we show that Geobacter sulfurreducens periplasmic cytochromes PpcABCDE inject electrons directly into OmcS nanowires by binding transiently with differing efficiencies, with the least-abundant cytochrome (PpcC) showing the highest efficiency. Remarkably, this defined nanowire-charging pathway is evolutionarily conserved in phylogenetically-diverse bacteria capable of EET. OmcS heme reduction potentials are within 200 mV of each other, with a midpoint 82 mV-higher than reported previously. This could explain efficient EET over micrometres at ultrafast (<200 fs) rates with negligible energy loss. Engineering this minimal nanowire-charging pathway may yield microbial chassis with improved performance.


Subject(s)
Geobacter , Nanowires , Oxidation-Reduction , Periplasm/metabolism , Electrons , Electron Transport , Cytochromes/metabolism , Geobacter/metabolism
2.
FASEB Bioadv ; 5(1): 1-12, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36643898

ABSTRACT

The Integrated Graduate Program in Physical and Engineering Biology (IGPPEB) at Yale University brings together Ph.D. students from the physical, engineering, and biological sciences. The main goals of this program are for students to become comfortable working in an interdisciplinary and collaborative research environment and adept at communicating with scientists and nonscientists. To fill a student-identified learning gap in engaging in inclusive discussions, IGPPEB students developed a communication workshop to improve skills in visual engagement, citing specific content, constructive conversation entrances, and encouragement of peers. Based on short- and long-term assessment of the workshop, 100% of students reported that it should be offered to future cohorts and 63% of students perceived it to be personally helpful. Additionally, 92% of participants reported using one or more of the core skills beyond the course, with skills in "Encouraging peers" and "Constructive conversation entrances" rated the highest in perceived improvement. Based on the highest average rating of 76 ± 24 (on a scale of 0-100), students agreed that the workshop made them feel more welcome in the IGPPEB community. With a rating of 68 ± 13, they also agreed that the workshop had a positive impact on their graduate school experience. Participants provided suggestions for future improvements, such as increasing student involvement in leading discussions of course material. This study demonstrates that a student-led workshop can improve perceived discussion skills and build community across an interdisciplinary program in the sciences.

3.
Nat Commun ; 13(1): 5150, 2022 09 07.
Article in English | MEDLINE | ID: mdl-36071037

ABSTRACT

Light-induced microbial electron transfer has potential for efficient production of value-added chemicals, biofuels and biodegradable materials owing to diversified metabolic pathways. However, most microbes lack photoactive proteins and require synthetic photosensitizers that suffer from photocorrosion, photodegradation, cytotoxicity, and generation of photoexcited radicals that are harmful to cells, thus severely limiting the catalytic performance. Therefore, there is a pressing need for biocompatible photoconductive materials for efficient electronic interface between microbes and electrodes. Here we show that living biofilms of Geobacter sulfurreducens use nanowires of cytochrome OmcS as intrinsic photoconductors. Photoconductive atomic force microscopy shows up to 100-fold increase in photocurrent in purified individual nanowires. Photocurrents respond rapidly (<100 ms) to the excitation and persist reversibly for hours. Femtosecond transient absorption spectroscopy and quantum dynamics simulations reveal ultrafast (~200 fs) electron transfer between nanowire hemes upon photoexcitation, enhancing carrier density and mobility. Our work reveals a new class of natural photoconductors for whole-cell catalysis.


Subject(s)
Nanowires , Biofilms , Cytochromes , Electron Transport , Electrons
4.
Sci Adv ; 8(19): eabm7193, 2022 May 13.
Article in English | MEDLINE | ID: mdl-35544567

ABSTRACT

Although proteins are considered as nonconductors that transfer electrons only up to 1 to 2 nanometers via tunneling, Geobacter sulfurreducens transports respiratory electrons over micrometers, to insoluble acceptors or syntrophic partner cells, via nanowires composed of polymerized cytochrome OmcS. However, the mechanism enabling this long-range conduction is unclear. Here, we demonstrate that individual nanowires exhibit theoretically predicted hopping conductance, at rate (>1010 s-1) comparable to synthetic molecular wires, with negligible carrier loss over micrometers. Unexpectedly, nanowires show a 300-fold increase in their intrinsic conductance upon cooling, which vanishes upon deuteration. Computations show that cooling causes a massive rearrangement of hydrogen bonding networks in nanowires. Cooling makes hemes more planar, as revealed by Raman spectroscopy and simulations, and lowers their reduction potential. We find that the protein surrounding the hemes acts as a temperature-sensitive switch that controls charge transport by sensing environmental perturbations. Rational engineering of heme environments could enable systematic tuning of extracellular respiration.

5.
Nat Commun ; 13(1): 829, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35149672

ABSTRACT

Advances in synthetic biology permit the genetic encoding of synthetic chemistries at monomeric precision, enabling the synthesis of programmable proteins with tunable properties. Bacterial pili serve as an attractive biomaterial for the development of engineered protein materials due to their ability to self-assemble into mechanically robust filaments. However, most biomaterials lack electronic functionality and atomic structures of putative conductive proteins are not known. Here, we engineer high electronic conductivity in pili produced by a genomically-recoded E. coli strain. Incorporation of tryptophan into pili increased conductivity of individual filaments >80-fold. Computationally-guided ordering of the pili into nanostructures increased conductivity 5-fold compared to unordered pili networks. Site-specific conjugation of pili with gold nanoparticles, facilitated by incorporating the nonstandard amino acid propargyloxy-phenylalanine, increased filament conductivity ~170-fold. This work demonstrates the sequence-defined production of highly-conductive protein nanowires and hybrid organic-inorganic biomaterials with genetically-programmable electronic functionalities not accessible in nature or through chemical-based synthesis.


Subject(s)
Electric Conductivity , Metal Nanoparticles/chemistry , Nanowires , Proteins/metabolism , Chemical Phenomena , Escherichia coli/genetics , Fimbriae Proteins , Fimbriae, Bacterial/metabolism , Gold/chemistry , Nanostructures , Nanowires/chemistry , Phenylalanine/metabolism , Protein Engineering , Tryptophan/metabolism
6.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Article in English | MEDLINE | ID: mdl-33372136

ABSTRACT

Proteins are commonly known to transfer electrons over distances limited to a few nanometers. However, many biological processes require electron transport over far longer distances. For example, soil and sediment bacteria transport electrons, over hundreds of micrometers to even centimeters, via putative filamentous proteins rich in aromatic residues. However, measurements of true protein conductivity have been hampered by artifacts due to large contact resistances between proteins and electrodes. Using individual amyloid protein crystals with atomic-resolution structures as a model system, we perform contact-free measurements of intrinsic electronic conductivity using a four-electrode approach. We find hole transport through micrometer-long stacked tyrosines at physiologically relevant potentials. Notably, the transport rate through tyrosines (105 s-1) is comparable to cytochromes. Our studies therefore show that amyloid proteins can efficiently transport charges, under ordinary thermal conditions, without any need for redox-active metal cofactors, large driving force, or photosensitizers to generate a high oxidation state for charge injection. By measuring conductivity as a function of molecular length, voltage, and temperature, while eliminating the dominant contribution of contact resistances, we show that a multistep hopping mechanism (composed of multiple tunneling steps), not single-step tunneling, explains the measured conductivity. Combined experimental and computational studies reveal that proton-coupled electron transfer confers conductivity; both the energetics of the proton acceptor, a neighboring glutamine, and its proximity to tyrosine influence the hole transport rate through a proton rocking mechanism. Surprisingly, conductivity increases 200-fold upon cooling due to higher availability of the proton acceptor by increased hydrogen bonding.


Subject(s)
Amyloidogenic Proteins/chemistry , Amyloidogenic Proteins/physiology , Proteins/physiology , Cytochromes/chemistry , Cytochromes/physiology , Electric Conductivity , Electron Transport/physiology , Electrons , Hydrogen Bonding , Models, Biological , Molecular Dynamics Simulation , Oxidation-Reduction , Proteins/chemistry , Protons , Tyrosine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...