Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Rev Sci Instrum ; 93(9): 093523, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36182514

ABSTRACT

Bright, short-pulsed neutron beams from laser-driven neutron sources (LANSs) provide a new perspective on material screening via fast neutron activation analysis (FNAA). FNAA is a nondestructive technique for determining material elemental composition based on nuclear excitation by fast neutron bombardment and subsequent spectral analysis of prompt γ-rays emitted by the active nuclei. Our recent experiments and simulations have shown that activation analysis can be used in practice with modest neutron fluences on the order of 105 n/cm2, which is available with current laser technology. In addition, time-resolved γ-ray measurements combined with picosecond neutron probes from LANSs are effective in mitigating the issue of spectral interference between elements, enabling highly accurate screening of complex samples containing many elements. This paper describes the predictive capability of LANS-based activation analysis based on experimental demonstrations and spectral calculations with Monte Carlo simulations.

2.
Sci Rep ; 12(1): 6876, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35477961

ABSTRACT

High energy density physics is the field of physics dedicated to the study of matter and plasmas in extreme conditions of temperature, densities and pressures. It encompasses multiple disciplines such as material science, planetary science, laboratory and astrophysical plasma science. For the latter, high energy density states can be accompanied by extreme radiation environments and super-strong magnetic fields. The creation of high energy density states in the laboratory consists in concentrating/depositing large amounts of energy in a reduced mass, typically solid material sample or dense plasma, over a time shorter than the typical timescales of heat conduction and hydrodynamic expansion. Laser-generated, high current-density ion beams constitute an important tool for the creation of high energy density states in the laboratory. Focusing plasma devices, such as cone-targets are necessary in order to focus and direct these intense beams towards the heating sample or dense plasma, while protecting the proton generation foil from the harsh environments typical of an integrated high-power laser experiment. A full understanding of the ion beam dynamics in focusing devices is therefore necessary in order to properly design and interpret the numerous experiments in the field. In this work, we report a detailed investigation of large-scale, kilojoule-class laser-generated ion beam dynamics in focusing devices and we demonstrate that high-brilliance ion beams compress magnetic fields to amplitudes exceeding tens of kilo-Tesla, which in turn play a dominant role in the focusing process, resulting either in a worsening or enhancement of focusing capabilities depending on the target geometry.

3.
Nat Commun ; 10(1): 5614, 2019 12 09.
Article in English | MEDLINE | ID: mdl-31819056

ABSTRACT

Fast ignition (FI) is a promising approach for high-energy-gain inertial confinement fusion in the laboratory. To achieve ignition, the energy of a short-pulse laser is required to be delivered efficiently to the pre-compressed fuel core via a high-energy electron beam. Therefore, understanding the transport and energy deposition of this electron beam inside the pre-compressed core is the key for FI. Here we report on the direct observation of the electron beam transport and deposition in a compressed core through the stimulated Cu Kα emission in the super-penetration scheme. Simulations reproducing the experimental measurements indicate that, at the time of peak compression, about 1% of the short-pulse energy is coupled to a relatively low-density core with a radius of 70 µm. Analysis with the support of 2D particle-in-cell simulations uncovers the key factors improving this coupling efficiency. Our findings are of critical importance for optimizing FI experiments in a super-penetration scheme.

4.
Nat Commun ; 10(1): 2995, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-31278266

ABSTRACT

Increasing the laser energy absorption into energetic particle beams represents a longstanding quest in intense laser-plasma physics. During the interaction with matter, part of the laser energy is converted into relativistic electron beams, which are the origin of secondary sources of energetic ions, γ-rays and neutrons. Here we experimentally demonstrate that using multiple coherent laser beamlets spatially and temporally overlapped, thus producing an interference pattern in the laser focus, significantly improves the laser energy conversion efficiency into hot electrons, compared to one beam with the same energy and nominal intensity as the four beamlets combined. Two-dimensional particle-in-cell simulations support the experimental results, suggesting that beamlet interference pattern induces a periodical shaping of the critical density, ultimately playing a key-role in enhancing the laser-to-electron energy conversion efficiency. This method is rather insensitive to laser pulse contrast and duration, making this approach robust and suitable to many existing facilities.

5.
Rev Sci Instrum ; 89(10): 10I114, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399813

ABSTRACT

A design of multichannel gated photomultiplier tube (PMT) is presented for the 960-channel neutron time-of-flight detector at the Institute of Laser Engineering of Osaka University. This is important for the fusion science and the nuclear photonics where intense hard X-rays are generated from the interaction of ultra-short laser pulse of petawatt power density with matter. The hard X-rays often overload PMTs and cause signal-induced background noises called afterpulses, making the detection of subsequent neutrons impossible. For this reason, the PMTs are coupled with an electrical time-gating (ETG) system to avoid overloading. The ETG system disables the PMT by modulating the dynode potential during the primary X-ray flash. An after-pulsing suppression technique is demonstrated by applying a reverse bias voltage between the photocathode and the first dynode. The presented multichannel scheme provides a gate response time of 80 ns, a signal cutoff ratio of 2.5 × 102, and requires reasonably low power consumption.

6.
Rev Sci Instrum ; 89(10): 10I128, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399964

ABSTRACT

A large-aperture high-sensitivity image intensifier panel that consists of an avalanche photodiode array and a light-emitting diode array is presented. The device has 40% quantum efficiency, over 104 optical gain, and 80-ns time resolution. The aperture size of the device is 20 cm, and with the current manufacturing process, it can be scaled to arbitrarily larger sizes. The device can intensify the light from a single particle scintillation emission to an eye-visible bright flash. The image resolution of the device is currently limited by the size of the avalanche photodiode that is 2 mm, although it can be scaled to smaller sizes in the near future. The image intensifier is operated at a small voltage, typically +57 V. The device can be applied to various applications, such as scintillation imaging, night vision cameras, and an image converter from non-visible light (such as infrared or ultraviolet) to visible light.

7.
Rev Sci Instrum ; 88(8): 083514, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28863668

ABSTRACT

X-ray imaging is very useful to investigate imploded core plasma in inertial fusion experiments. We can obtain information from X-ray images, such as shape, density, and temperature. An X-ray framing camera (XFC) capable of taking two-dimensional, time-resolved X-ray images is used to capture the images. In previous work, we developed a numerical model of an XFC to analyze its X-ray image. The calculated results agreed qualitatively with experimental results. However, it was not accurate enough to determine the absolute value of the signal. We thought this discrepancy was caused by gain depletion. In high energy laser experiments, high photon flux may cause gain depletion. This is a problem for accurate X-ray measurement. In this paper, we report our new model, including gain depletion. The new model is evaluated by tabletop laser experiments and high energy laser experiments. The results calculated using the new model agree quantitatively with our experimental results. Furthermore, we confirmed that gain depletion occurs in our high energy laser experiments. For quantitatively accurate X-ray intensity measurements, the XFC should be used with limited incident photon flux such that the gain linearity is guaranteed.

8.
Sci Rep ; 7: 42451, 2017 02 13.
Article in English | MEDLINE | ID: mdl-28211913

ABSTRACT

Using one of the world most powerful laser facility, we demonstrate for the first time that high-contrast multi-picosecond pulses are advantageous for proton acceleration. By extending the pulse duration from 1.5 to 6 ps with fixed laser intensity of 1018 W cm-2, the maximum proton energy is improved more than twice (from 13 to 33 MeV). At the same time, laser-energy conversion efficiency into the MeV protons is enhanced with an order of magnitude, achieving 5% for protons above 6 MeV with the 6 ps pulse duration. The proton energies observed are discussed using a plasma expansion model newly developed that takes the electron temperature evolution beyond the ponderomotive energy in the over picoseconds interaction into account. The present results are quite encouraging for realizing ion-driven fast ignition and novel ion beamlines.

9.
Rev Sci Instrum ; 86(5): 053503, 2015 May.
Article in English | MEDLINE | ID: mdl-26026521

ABSTRACT

A neutron bang time and burn history monitor in inertial confinement fusion with fast ignition are necessary for plasma diagnostics. In the FIREX project, however, no detector attained those capabilities because high-intensity X-rays accompanied fast electrons used for plasma heating. To solve this problem, single-crystal CVD diamond was grown and fabricated into a radiation detector. The detector, which had excellent charge transportation property, was tested to obtain a response function for intense X-rays. The applicability for neutron bang time and burn history monitor was verified experimentally. Charge collection efficiency of 99.5% ± 0.8% and 97.1% ± 1.4% for holes and electrons were obtained using 5.486 MeV alpha particles. The drift velocity at electric field which saturates charge collection efficiency was 1.1 ± 0.4 × 10(7) cm/s and 1.0 ± 0.3 × 10(7) cm/s for holes and electrons. Fast response of several ns pulse width for intense X-ray was obtained at the GEKKO XII experiment, which is sufficiently fast for ToF measurements to obtain a neutron signal separately from X-rays. Based on these results, we confirmed that the single-crystal CVD diamond detector obtained neutron signal with good S/N under ion temperature 0.5-1 keV and neutron yield of more than 10(9) neutrons/shot.

10.
Rev Sci Instrum ; 85(11): 11D629, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430205

ABSTRACT

A photonuclear-reaction-based hard x-ray spectrometer is developed to measure the number and energy spectrum of fast electrons generated by interactions between plasma and intense laser light. In this spectrometer, x-rays are converted to neutrons through photonuclear reactions, and the neutrons are counted with a bubble detector that is insensitive to x-rays. The spectrometer consists of a bundle of hard x-ray detectors that respond to different photon-energy ranges. Proof-of-principle experiment was performed on a linear accelerator facility. A quasi-monoenergetic electron bunch (Ne = 1.0 × 10(-6) C, Ee = 16 ± 0.32 MeV) was injected into a 5-mm-thick lead plate. Bremsstrahlung x-rays, which emanate from the lead plate, were measured with the spectrometer. The measured spectral shape and intensity agree fairly well with those computed with a Monte Carlo simulation code. The result shows that high-energy x-rays can be measured absolutely with a photon-counting accuracy of 50%-70% in the energy range from 2 MeV to 20 MeV with a spectral resolution (Δhν/hν) of about 15%. Quantum efficiency of this spectrometer was designed to be 10(-7), 10(-4), 10(-5), respectively, for 2-10, 11-15, and 15-25 MeV of photon energy ranges.

11.
Rev Sci Instrum ; 85(11): 11E113, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430292

ABSTRACT

An electron energy spectrometer (ESM) is one of the most fundamental diagnostics in the fast ignition experiment. It is necessary to observe the spectra down to a low energy range in order to obtain the accurate deposition efficiency toward the core. Here, we realize the suitable ESM by using a ferrite magnet with a moderate magnetic field of 0.3 T and a rectangular magnetic circuit covered with a steel plate in the inlet side.

12.
Rev Sci Instrum ; 85(11): 11E125, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430304

ABSTRACT

A multichannel low-energy neutron spectrometer for down-scattered neutron (DSN) measurements in inertial confinement fusion (ICF) experiments has been developed. Our compact-size 256-channel lithium-glass-scintillator-based spectrometer has been implemented and tested in ICF experiments with the GEKKO XII laser. We have performed time calibration of the 256-channel analog-to-digital convertor system used for DSN measurements via X-ray pulse signals. We have clearly observed the DD-primary fusion neutron signal and have successfully studied the detector's impulse response. Our detector is soon to be implemented in future ICF experiments.

13.
Rev Sci Instrum ; 85(11): 11E126, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430305

ABSTRACT

The characteristics of oxygen-enriched liquid scintillators with very low afterglow are investigated and optimized for application to a single-hit neutron spectrometer for fast ignition experiments. It is found that 1,2,4-trimethylbenzene has better characteristics as a liquid scintillator solvent than the conventional solvent, p-xylene. In addition, a benzophenon-doped BBQ liquid scintillator is shown to demonstrate very rapid time response, and therefore has potential for further use in neutron diagnostics with fast time resolution.

14.
Rev Sci Instrum ; 83(10): 10D909, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23126912

ABSTRACT

In the fast-ignition scheme, very hard x-rays (hereinafter referred to as γ-rays) are generated by Bremsstrahlung radiation from fast electrons. Significant backgrounds were observed around the deuterium-deuterium fusion neutron signals in the experiment in 2010. In this paper the backgrounds were studied in detail, based on Monte Carlo simulations, and they were confirmed to be γ-rays from the target, scattered γ-rays from the experimental bay walls (γ'-rays), and neutrons generated by (γ, n) reactions in either the target vacuum chamber or the diagnostic instruments (γ-n neutrons).

15.
Phys Rev Lett ; 102(23): 235002, 2009 Jun 12.
Article in English | MEDLINE | ID: mdl-19658942

ABSTRACT

We performed integrated experiments on impact ignition, in which a portion of a deuterated polystyrene (CD) shell was accelerated to about 600 km/s and was collided with precompressed CD fuel. The kinetic energy of the impactor was efficiently converted into thermal energy generating a temperature of about 1.6 keV. We achieved a two-order-of-magnitude increase in the neutron yield by optimizing the timing of the impact collision, demonstrating the high potential of impact ignition for fusion energy production.

16.
Rev Sci Instrum ; 79(10): 10E916, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19044571

ABSTRACT

Low-density plastic foam filled with liquid deuterium is one of the candidates for inertial fusion target. Density profile and trajectory of 527 nm laser-irradiated planer foam-deuterium target in the acceleration phase were observed with streaked side-on x-ray backlighting. An x-ray imager employing twin slits coupled to an x-ray streak camera was used to simultaneously observe three images of the target: self-emission from the target, x-ray backlighter profile, and the backlit target. The experimentally obtained density profile and trajectory were in good agreement with predictions by one-dimensional hydrodynamic simulation code ILESTA-1D.

17.
Phys Rev Lett ; 100(16): 165001, 2008 Apr 25.
Article in English | MEDLINE | ID: mdl-18518210

ABSTRACT

We produced cylindrically imploded plasmas, which have the same density-radius product of the imploded plasma rhoR with the compressed core in the fast ignition experiment and demonstrated efficient fast heating of cylindrically imploded plasmas with an ultraintense laser light. The coupling efficiency from the laser to the imploded column was 14%-21%, implying strong collimation of energetic electrons over a distance of 300 microm of the plasma. Particle-in-cell simulation shows confinement of the energetic electrons by self-generated magnetic and electrostatic fields excited along the imploded plasmas, and the efficient fast heating in the compressed region.

18.
Neuroscience ; 146(3): 1073-81, 2007 May 25.
Article in English | MEDLINE | ID: mdl-17434686

ABSTRACT

It has been shown that polyunsaturated fatty acids such as arachinonic and docosahexanoic acids but not monounsaturated and saturated long-chain fatty acids promote basal and nerve growth factor (NGF)-induced neurite extension of PC12 cells, a line derived from a rat pheochromocytoma. On the other hand, short-chain fatty acids and valproic acid (2-propylpentanoic acid) enhance the growth of neurite processes of the cells only in the presence of inducers. In this study, we demonstrated that straight medium-chain fatty acids (MCFAs) at millimolar concentrations alone potently induced neuronal differentiation of PC12 cells. Hexanoic, heptanoic and octanoic acids dose-dependently induced neurite outgrowth of the cells: their maximal effects determined 2 days after addition to the culture medium were more marked than the effect of NGF. PC12 cells exposed to octanoic acid expressed increased levels of the neuronal marker beta-tubulin isotype III. Nonanoic, decanoic, and dodecanoic acids also induced growth of neurite processes, but their maximal effects were less marked than that of octanoic acid. In contrast, the polyunsaturated fatty acid linoleic acid and short-chain fatty acids had only slight or almost no effects on neurite formation in the absence of NGF. The effect of octanoic acid was synergistic with or additive to the effects of NGF and dibutyryl cyclic AMP. Octanoic acid upregulated phosphorylation of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK), critical signaling molecules in neuronal differentiation, but not phosphorylation of Akt, a signaling molecule downstream of phosphatidylinositol 3-kinase (PI3K). Moreover, growth of neurites induced by octanoic acid was potently inhibited by treatment of cells with the p38 MAPK inhibitor SB203580 and the ERK kinase inhibitor PD98059 but not inhibited and only slightly inhibited by the JNK inhibitor SP600125 and the PI3K inhibitor wortmannin, respectively. Taken together, our results indicate that MCFAs, including octanoic acid, induced neurite outgrowth of PC12 cells in the absence of NGF and suggest that the activation of p38 MAPK and ERK pathways is involved in this process.


Subject(s)
Caprylates/pharmacology , Neurites/drug effects , Animals , Blotting, Western , Bucladesine/pharmacology , Caproates/pharmacology , Enzyme Activation/physiology , Extracellular Signal-Regulated MAP Kinases/physiology , Heptanoic Acids/pharmacology , MAP Kinase Kinase 4/metabolism , Nerve Growth Factors/pharmacology , PC12 Cells , Phosphorylation , Rats , Tetrazolium Salts , Thiazoles , p38 Mitogen-Activated Protein Kinases/metabolism
19.
Phys Rev Lett ; 98(4): 045002, 2007 Jan 26.
Article in English | MEDLINE | ID: mdl-17358782

ABSTRACT

The growth rate of the ablative Rayleigh-Taylor instability is approximated by gamma = square root[kg/(1 + kL)] - beta km/rho(a), where k is the perturbation wave number, g the gravity, L the density scale length, m the mass ablation rate, and rho(a) the peak target density. The coefficient beta was evaluated for the first time by measuring all quantities of this formula except for L, which was taken from the simulation. Although the experimental value of beta = 1.2+/-0.7 at short perturbation wavelengths is in reasonably good agreement with the theoretical prediction of beta = 1.7, it is found to be larger than the prediction at long wavelengths.

20.
Transplant Proc ; 36(7): 2018-9, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15518730

ABSTRACT

In Japan, nationwide cadaveric organ sharing for kidney transplantation by the Japan Organ Transplant Network (JOTN) has operated since April 1995. This study retrospectively analyzed the long-term results of single pediatric donor kidneys transplanted into adult or pediatric recipients at a single center. From March 1983 to December 2002, 281 cadaveric renal allografts were transplanted at our center, including, 17 recipients of cadaveric kidneys from donors aged less than 16 years. We divided these 17 recipients into two groups: 10 adult recipients (group 1; G1) and seven pediatric recipients (group 2; G2). HLA-AB, -DR mismatches were 1.3 +/- 1.3, 0.7 +/- 0.5 in G1 and 2.6 +/- 1.3, 1.4 +/- 0.8 in G2, respectively (P < .05 for both). The end of the observation of this study was March 2003. Among G1, two recipients died with functioning grafts and one died after graft loss. Among G2, no recipients died. Patient survival rates at 1 and 5 years were 90% and 80% in G1 and 100% and 100% in G2, respectively. At the end of the observation in this study, five recipients among G1 and six recipients among G2 had functioning grafts. Graft survival rates at 1 and 5 years were 90% and 80% in G1 and 85.7% and 85.7% in G2, respectively. Our results demonstrate that transplantation of pediatric cadaveric kidneys into pediatric recipients was excellent compared to adult recipients in terms of survival. Priority to pediatric patients should be given especially in cases of pediatric donors.


Subject(s)
Kidney Transplantation/physiology , Tissue Donors/statistics & numerical data , Adolescent , Adult , Age Factors , Child , Histocompatibility Testing , Humans , Kidney Transplantation/methods , Kidney Transplantation/mortality , Retrospective Studies , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...