Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(16): e2315123121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38602915

ABSTRACT

Pulmonary arterial hypertension (PAH) is characterized by stenosis and occlusions of small pulmonary arteries, leading to elevated pulmonary arterial pressure and right heart failure. Although accumulating evidence shows the importance of interleukin (IL)-6 in the pathogenesis of PAH, the target cells of IL-6 are poorly understood. Using mice harboring the floxed allele of gp130, a subunit of the IL-6 receptor, we found substantial Cre recombination in all hematopoietic cell lineages from the primitive hematopoietic stem cell level in SM22α-Cre mice. We also revealed that a CD4+ cell-specific gp130 deletion ameliorated the phenotype of hypoxia-induced pulmonary hypertension in mice. Disruption of IL-6 signaling via deletion of gp130 in CD4+ T cells inhibited phosphorylation of signal transducer and activator of transcription 3 (STAT3) and suppressed the hypoxia-induced increase in T helper 17 cells. To further examine the role of IL-6/gp130 signaling in more severe PH models, we developed Il6 knockout (KO) rats using the CRISPR/Cas9 system and showed that IL-6 deficiency could improve the pathophysiology in hypoxia-, monocrotaline-, and Sugen5416/hypoxia (SuHx)-induced rat PH models. Phosphorylation of STAT3 in CD4+ cells was also observed around the vascular lesions in the lungs of the SuHx rat model, but not in Il6 KO rats. Blockade of IL-6 signaling had an additive effect on conventional PAH therapeutics, such as endothelin receptor antagonist (macitentan) and soluble guanylyl cyclase stimulator (BAY41-2272). These findings suggest that IL-6/gp130 signaling in CD4+ cells plays a critical role in the pathogenesis of PAH.


Subject(s)
Hypertension, Pulmonary , Interleukin-6 , Animals , Mice , Rats , CD4-Positive T-Lymphocytes/pathology , Cytokine Receptor gp130/genetics , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/pathology , Hypoxia/pathology , Interleukin-6/genetics , Pulmonary Artery/pathology
2.
Cell Mol Life Sci ; 81(1): 51, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38252153

ABSTRACT

Retinitis pigmentosa (RP) and macular dystrophy (MD) cause severe retinal dysfunction, affecting 1 in 4000 people worldwide. This disease is currently assumed to be intractable, because effective therapeutic methods have not been established, regardless of genetic or sporadic traits. Here, we examined a RP mouse model in which the Prominin-1 (Prom1) gene was deficient and investigated the molecular events occurring at the outset of retinal dysfunction. We extracted the Prom1-deficient retina subjected to light exposure for a short time, conducted single-cell expression profiling, and compared the gene expression with and without stimuli. We identified the cells and genes whose expression levels change directly in response to light stimuli. Among the genes altered by light stimulation, Igf1 was decreased in rod photoreceptor cells and astrocytes under the light-stimulated condition. Consistently, the insulin-like growth factor (IGF) signal was weakened in light-stimulated photoreceptor cells. The recovery of Igf1 expression with the adeno-associated virus (AAV) prevented photoreceptor cell death, and its treatment in combination with the endothelin receptor antagonist led to the blockade of abnormal glial activation and the promotion of glycolysis, thereby resulting in the improvement of retinal functions, as assayed by electroretinography. We additionally demonstrated that the attenuation of mammalian/mechanistic target of rapamycin (mTOR), which mediates IGF signalling, leads to complications in maintaining retinal homeostasis. Together, we propose that combinatorial manipulation of distinct mechanisms is useful for the maintenance of the retinal condition.


Subject(s)
Macular Degeneration , Retinal Diseases , Retinitis Pigmentosa , Animals , Mice , Endothelins , Insulin-Like Growth Factor I/genetics , Retina , Retinal Rod Photoreceptor Cells
3.
Regen Ther ; 25: 220-228, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38260087

ABSTRACT

Background: Breast reconstruction is crucial for patients who have undergone mastectomy for breast cancer. Our bioabsorbable implants comprising an outer poly-l-lactic acid mesh and an inner component filled with collagen sponge promote and retain adipogenesis in vivo without the addition of exogenous cells or growth factors. In this study, we evaluated adipogenesis over time histologically and at the gene expression level using this implant in a rodent model. Methods: The implants were inserted in the inguinal and dorsal regions of the animals. At 1, 3, 6, and 12 months post-operation, the weight, volume, and histological assessment of all newly formed tissue were performed. We analyzed the formation of new adipose tissue using multiphoton microscopy and RNA sequencing. Results: Both in the inguinal and dorsal regions, adipose tissue began to form 1 month post-operation in the peripheral area. Angiogenesis into implants was observed until 3 months. At 6 months, microvessels matured and the amount of newly generated adipose tissue peaked and was uniformly distributed inside implants. The amount of newly generated adipose tissue decreased from 6 to 12 months but at 12 months, adipose tissue was equivalent to the native tissue histologically and in terms of gene expression. Conclusions: Our bioabsorbable implants could induce normal adipogenesis into the implants after subcutaneous implantation. Our implants can serve as a novel and safe material for breast reconstruction without requiring exogenous cells or growth factors.

4.
Mater Today Bio ; 23: 100847, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37953756

ABSTRACT

Although the clinical application of cell-free tissue-engineered vascular grafts (TEVGs) has been proposed, vascular tissue regeneration mechanisms have not been fully clarified. Here, we report that monocyte subpopulations reconstruct vascular-like tissues through integrin signaling. An Arg-Glu-Asp-Val peptide-modified acellular long-bypass graft was used as the TEVG, and tissue regeneration in the graft was evaluated using a cardiopulmonary pump system and porcine transplantation model. In 1 day, the luminal surface of the graft was covered with cells that expressed CD163, CD14, and CD16, which represented the monocyte subpopulation, and they exhibited proliferative and migratory abilities. RNA sequencing showed that captured cells had an immune-related phenotype similar to that of monocytes and strongly expressed cell adhesion-related genes. In vitro angiogenesis assay showed that tube formation of the captured cells occurred via integrin signal activation. After medium- and long-term graft transplantation, the captured cells infiltrated the tunica media layer and constructed vascular with a CD31/CD105-positive layer and an αSMA-positive structure after 3 months. This finding, including multiple early-time observations provides clear evidence that blood-circulating monocytes are directly involved in vascular remodeling.

5.
iScience ; 26(11): 108257, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37920664

ABSTRACT

[This corrects the article DOI: 10.1016/j.isci.2023.107887.].

6.
iScience ; 26(10): 107887, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37771660

ABSTRACT

Neural induction is a process where naive cells are converted into committed cells with neural characteristics, and it occurs at the earliest step during embryogenesis. Although the signaling molecules and chromatin remodeling for neural induction have been identified, the mutual relationships between these molecules are yet to be fully understood. By taking advantage of the neural differentiation system of mouse embryonic stem (ES) cells, we discovered that the BMP signal regulates the expression of several polycomb repressor complex (PRC) component genes. We particularly focused on Polyhomeotic Homolog 1 (Phc1) and established Phc1-knockout (Phc1-KO) ES cells. We found that Phc1-KO failed to acquire the neural fate, and the cells remained in pluripotent or primitive non-neural states. Chromatin accessibility analysis suggests that Phc1 is essential for chromatin packing. Aberrant upregulation of the BMP signal was confirmed in the Phc1 homozygotic mutant embryos. Taken together, Phc1 is required for neural differentiation through epigenetic modification.

7.
Proteome Sci ; 21(1): 11, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37543598

ABSTRACT

BACKGROUND: Effective diagnostic biomarkers for aortic aneurysm (AA) that are detectable in blood tests are required because early detection and rupture risk assessment of AA can provide insights into medical therapy and preventive treatments. However, known biomarkers for AA lack specificity and reliability for clinical diagnosis. METHODS: We performed proteome analysis of serum samples from patients with atherosclerotic thoracic AA (TAA) and healthy control (HC) subjects to identify diagnostic biomarkers for AA. Serum samples were separated into low-density lipoprotein, high-density lipoprotein, and protein fractions, and the major proteins were depleted. From the proteins identified in the three fractions, we narrowed down biomarker candidates to proteins uniformly altered in all fractions between patients with TAA and HC subjects and evaluated their capability to discriminate patients with TAA and those with abdominal AA (AAA) from HC subjects using receiver operating characteristic (ROC) analysis. For the clinical validation, serum concentrations of biomarker candidates were measured in patients with TAA and AAA registered in the biobank of the same institute, and their capability for the diagnosis was evaluated. RESULTS: Profilin 1 (PFN1) and complement factor D (CFD) showed the most contrasting profiles in all three fractions between patients with TAA and HC subjects and were selected as biomarker candidates. The PFN1 concentration decreased, whereas the CFD concentration increased in the sera of patients with TAA and AAA when compared with those of HC subjects. The ROC analysis showed that these proteins could discriminate patients with TAA and AAA from HC subjects. In the validation study, these candidates showed significant concentration differences between patients with TAA or AAA and controls. PFN1 and CFD showed sufficient area under the curve (AUC) in the ROC analysis, and their combination further increased the AUC. The serum concentrations of PFN1 and CFD also showed significant differences between patients with aortic dissection and controls in the validation study. CONCLUSION: PFN1 and CFD are potential diagnostic biomarkers for TAA and AAA and measurable in blood samples; their diagnostic performance can be augmented by their combination. These biomarkers may facilitate the development of diagnostic systems to identify patients with AA.

8.
Stem Cells ; 41(5): 453-467, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36866456

ABSTRACT

During development, the hypothalamus emerges from the ventral diencephalon and is regionalized into several distinct functional domains. Each domain is characterized by a different combination of transcription factors, including Nkx2.1, Nkx2.2, Pax6, and Rx, which are expressed in the presumptive hypothalamus and its surrounding regions, and play critical roles in defining each area. Here, we recapitulated the molecular networks formed by the gradient of Sonic Hedgehog (Shh) and the aforementioned transcription factors. Using combinatorial experimental systems of directed neural differentiation of mouse embryonic stem (ES) cells, as well as a reporter mouse line and gene overexpression in chick embryos, we deciphered the regulation of transcription factors by different Shh signal intensities. We then used CRISPR/Cas9 mutagenesis to demonstrate the mutual repression between Nkx2.1 and Nkx2.2 in a cell-autonomous manner; however, they induce each other in a non-cell-autonomous manner. Moreover, Rx resides upstream of all these transcription factors and determines the location of the hypothalamic region. Our findings suggest that Shh signaling and its downstream transcription network are required for hypothalamic regionalization and establishment.


Subject(s)
Hedgehog Proteins , Transcription Factors , Animals , Chick Embryo , Mice , Transcription Factors/genetics , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Hypothalamus , Gene Expression Regulation, Developmental
9.
Dev Dyn ; 251(2): 350-361, 2022 02.
Article in English | MEDLINE | ID: mdl-34181293

ABSTRACT

BACKGROUND: The neural tube comprises several different types of progenitors and postmitotic neurons that co-ordinately act with each other to play integrated functions. Its development consists of two phases: proliferation of progenitor cells and differentiation into postmitotic neurons. How progenitor cells differentiate into each corresponding neuron is an important question for understanding the mechanisms of neuronal development. RESULTS: Here we introduce one of the Sox transcription factors, Sox14, which plays an essential role in the promotion of neuronal differentiation. Sox14 belongs to the SoxB2 subclass and its expression starts in the progenitor regions before neuronal differentiation is initiated at the trunk level of the neural tube. After neuronal differentiation is initiated, Sox14 expression gradually becomes confined to the V2a region of the neural tube, where Chx10 is co-expressed. Overexpression of Sox14 restricts progenitor cell proliferation. Conversely, the blockade of Sox14 expression by the RNAi strategy inhibits V2a neuron differentiation and causes expansion of the progenitor domain. We further found that Sox14 acted as a transcriptional activator. CONCLUSIONS: Sox14 acts as a modulator of cell proliferation and is essential for initiation of neuronal differentiation in the chick neural tube.


Subject(s)
SOXB2 Transcription Factors , Spinal Cord , Animals , Cell Differentiation/genetics , Chickens , Gene Expression Regulation, Developmental , SOXB2 Transcription Factors/genetics , SOXB2 Transcription Factors/metabolism , Spinal Cord/metabolism , Transcription Factors/metabolism
10.
Sci Rep ; 11(1): 23056, 2021 11 29.
Article in English | MEDLINE | ID: mdl-34845242

ABSTRACT

Cardiogenesis requires the orchestrated spatiotemporal tuning of BMP signalling upon the balance between induction and counter-acting suppression of the differentiation of the cardiac tissue. SMADs are key intracellular transducers and the selective degradation of SMADs by the ubiquitin-proteasome system is pivotal in the spatiotemporal tuning of BMP signalling. However, among three SMADs for BMP signalling, SMAD1/5/9, only the specific E3 ligase of SMAD9 remains poorly investigated. Here, we report for the first time that SMAD9, but not the other SMADs, is ubiquitylated by the E3 ligase ASB2 and targeted for proteasomal degradation. ASB2, as well as Smad9, is conserved among vertebrates. ASB2 expression was specific to the cardiac region from the very early stage of cardiac differentiation in embryogenesis of mouse. Knockdown of Asb2 in zebrafish resulted in a thinned ventricular wall and dilated ventricle, which were rescued by simultaneous knockdown of Smad9. Abundant Smad9 protein leads to dysregulated cardiac differentiation through a mechanism involving Tbx2, and the BMP signal conducted by Smad9 was downregulated under quantitative suppression of Smad9 by Asb2. Our findings demonstrate that ASB2 is the E3 ligase of SMAD9 and plays a pivotal role in cardiogenesis through regulating BMP signalling.


Subject(s)
Heart , Smad8 Protein , Suppressor of Cytokine Signaling Proteins , Animals , Humans , Mice , Bone Morphogenetic Proteins/metabolism , Cell Differentiation , Gene Expression Profiling , Gene Expression Regulation, Developmental , Heart/embryology , HEK293 Cells , Oligonucleotide Array Sequence Analysis , Proteasome Endopeptidase Complex/metabolism , Signal Transduction , Smad8 Protein/biosynthesis , Smad8 Protein/physiology , Suppressor of Cytokine Signaling Proteins/biosynthesis , Suppressor of Cytokine Signaling Proteins/physiology , Ubiquitin/chemistry , Ubiquitin/physiology , Ubiquitin-Protein Ligases/metabolism , Zebrafish
11.
Dis Model Mech ; 14(11)2021 11 01.
Article in English | MEDLINE | ID: mdl-34664634

ABSTRACT

Retinitis pigmentosa (RP) and macular dystrophy (MD) are characterized by gradual photoreceptor death in the retina and are often associated with genetic mutations, including those in the prominin-1 (Prom1) gene. Prom1-knockout (KO) mice recapitulate key features of these diseases including light-dependent retinal degeneration and constriction of retinal blood vessels. The mechanisms underlying such degeneration have remained unclear, however. We here analysed early events associated with retinal degeneration in Prom1-KO mice. We found that photoreceptor cell death and glial cell activation occur between 2 and 3 weeks after birth. Whereas gene expression was not affected at 2 weeks, the expression of several genes was altered at 3 weeks in the Prom1-KO retina, with the expression of that for endothelin-2 (Edn2) being markedly upregulated. Expression of Edn2 was also induced by light stimulation in Prom1-KO mice reared in the dark. Treatment with endothelin receptor antagonists attenuated photoreceptor cell death, gliosis and retinal vessel stenosis in Prom1-KO mice. Our findings thus reveal early manifestations of retinal degeneration in a model of RP/MD and suggest potential therapeutic agents for these diseases. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Retinal Degeneration , Retinitis Pigmentosa , AC133 Antigen/genetics , AC133 Antigen/metabolism , Animals , Gene Expression , Mice , Retina/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/metabolism
12.
Adv Mater ; 33(24): e2100312, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33949743

ABSTRACT

Solid-state synthesis from powder precursors is the primary processing route to advanced multicomponent ceramic materials. Designing reaction conditions and precursors for ceramic synthesis can be a laborious, trial-and-error process, as heterogeneous mixtures of precursors often evolve through a complicated series of reaction intermediates. Here, ab initio thermodynamics is used to model which pair of precursors has the most reactive interface, enabling the understanding and anticipation of which non-equilibrium intermediates form in the early stages of a solid-state reaction. In situ X-ray diffraction and in situ electron microscopy are then used to observe how these initial intermediates influence phase evolution in the synthesis of the classic high-temperature superconductor YBa2 Cu3 O6+ x   (YBCO). The model developed herein rationalizes how the replacement of the traditional BaCO3 precursor with BaO2 redirects phase evolution through a low-temperature eutectic melt, facilitating the formation of YBCO in 30 min instead of 12+ h. Precursor selection plays an important role in tuning the thermodynamics of interfacial reactions and emerges as an important design parameter in planning kinetically favorable synthesis pathways to complex ceramic materials.

13.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Article in English | MEDLINE | ID: mdl-33836606

ABSTRACT

Pulmonary arterial hypertension (PAH) is a devastating disease characterized by arteriopathy in the small to medium-sized distal pulmonary arteries, often accompanied by infiltration of inflammatory cells. Aryl hydrocarbon receptor (AHR), a nuclear receptor/transcription factor, detoxifies xenobiotics and regulates the differentiation and function of various immune cells. However, the role of AHR in the pathogenesis of PAH is largely unknown. Here, we explore the role of AHR in the pathogenesis of PAH. AHR agonistic activity in serum was significantly higher in PAH patients than in healthy volunteers and was associated with poor prognosis of PAH. Sprague-Dawley rats treated with the potent endogenous AHR agonist, 6-formylindolo[3,2-b]carbazole, in combination with hypoxia develop severe pulmonary hypertension (PH) with plexiform-like lesions, whereas Sprague-Dawley rats treated with the potent vascular endothelial growth factor receptor 2 inhibitors did not. Ahr-knockout (Ahr-/- ) rats generated using the CRISPR/Cas9 system did not develop PH in the SU5416/hypoxia model. A diet containing Qing-Dai, a Chinese herbal drug, in combination with hypoxia led to development of PH in Ahr+/+ rats, but not in Ahr-/- rats. RNA-seq analysis, chromatin immunoprecipitation (ChIP)-seq analysis, immunohistochemical analysis, and bone marrow transplantation experiments show that activation of several inflammatory signaling pathways was up-regulated in endothelial cells and peripheral blood mononuclear cells, which led to infiltration of CD4+ IL-21+ T cells and MRC1+ macrophages into vascular lesions in an AHR-dependent manner. Taken together, AHR plays crucial roles in the development and progression of PAH, and the AHR-signaling pathway represents a promising therapeutic target for PAH.


Subject(s)
Pulmonary Arterial Hypertension/pathology , Receptors, Aryl Hydrocarbon/metabolism , Animals , Carbazoles/adverse effects , Disease Progression , Drugs, Chinese Herbal/adverse effects , Endothelial Cells/metabolism , Humans , Inflammation , Leukocytes, Mononuclear/metabolism , Lung/metabolism , Lung/pathology , Macrophages/metabolism , Pulmonary Arterial Hypertension/blood , Pulmonary Arterial Hypertension/chemically induced , Pulmonary Arterial Hypertension/metabolism , Rats , Receptors, Aryl Hydrocarbon/agonists , Receptors, Aryl Hydrocarbon/blood , Receptors, Aryl Hydrocarbon/genetics , Signal Transduction , T-Lymphocytes/metabolism
14.
Dev Growth Differ ; 63(1): 82-92, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33410138

ABSTRACT

A basic helix-loop-helix transcription factor Hey2 is expressed in the ventricular myocardium and endocardium of mouse embryos, and Hey2 null mice die perinatally showing ventricular septal defect, dysplastic tricuspid valve and hypoplastic right ventricle. In order to understand region-specific roles of Hey2 during cardiac morphogenesis, we generated Hey2 conditional knockout (cKO) mice using Mef2c-AHF-Cre, which was active in the anterior part of the second heart field and the right ventricle and outflow tract of the heart. Hey2 cKO neonates reproduced three anomalies commonly observed in Hey2 null mice. An earliest morphological defect was the lack of right ventricular extension along the apico-basal axis at midgestational stages. Underdevelopment of the right ventricle was present in all cKO neonates including those without apparent atresia of right-sided atrioventricular connection. RNA sequencing analysis of cKO embryos identified that the gene expression of a non-chamber T-box factor Tbx2 was ectopically induced in the chamber myocardium of the right ventricle. Consistently, mRNA expression of the Mycn transcription factor, which was a cell cycle regulator transcriptionally repressed by Tbx2, was down regulated, and the number of S-phase cells was significantly decreased in the right ventricle of cKO heart. These results suggest that Hey2 plays an important role in right ventricle development during cardiac morphogenesis, at least in part, through mitigating Tbx2-dependent inhibition of Mycn expression.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Heart Ventricles/growth & development , Heart/growth & development , N-Myc Proto-Oncogene Protein/metabolism , Repressor Proteins/metabolism , T-Box Domain Proteins/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/deficiency , Female , Heart Ventricles/metabolism , Male , Mice , Mice, Knockout , Mice, Transgenic , Morphogenesis , N-Myc Proto-Oncogene Protein/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Repressor Proteins/deficiency , T-Box Domain Proteins/genetics , Ventricular Function, Right
15.
Sci Rep ; 10(1): 20004, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33203959

ABSTRACT

Subarachnoid hemorrhage due to rupture of an intracranial aneurysm has a quite poor prognosis after the onset of symptoms, despite the modern technical advances. Thus, the mechanisms underlying the rupture of lesions should be clarified. To this end, we obtained gene expression profile data and identified the neutrophil-related enriched terms in rupture-prone lesions using Gene Ontology analysis. Next, to validate the role of neutrophils in the rupture of lesions, granulocyte-colony stimulating factor (G-CSF) was administered to a rat model, in which more than half of induced lesions spontaneously ruptured, leading to subarachnoid hemorrhage. As a result, G-CSF treatment not only increased the number of infiltrating neutrophils, but also significantly facilitated the rupture of lesions. To clarify the mechanisms of how neutrophils facilitate this rupture, we used HL-60 cell line and found an enhanced collagenolytic activity, corresponding to matrix metalloproteinase 9 (MMP9), upon inflammatory stimuli. The immunohistochemical analyses revealed the accumulation of neutrophils around the site of rupture and the production of MMP9 from these cells in situ. Consistently, the collagenolytic activity of MMP9 could be detected in the lysate of ruptured lesions. These results suggest the crucial role of neutrophils to the rupture of intracranial aneurysms; implying neutrophils as a therapeutic or diagnostic target candidate.


Subject(s)
Aneurysm, Ruptured/pathology , Intracranial Aneurysm/pathology , Neutrophils/physiology , Aneurysm, Ruptured/metabolism , Animals , Cell Line, Tumor , Female , Granulocyte Colony-Stimulating Factor/metabolism , HL-60 Cells , Humans , Inflammation/metabolism , Inflammation/pathology , Intracranial Aneurysm/metabolism , Matrix Metalloproteinase 9/metabolism , Neutrophils/metabolism , Rats , Rats, Sprague-Dawley , Subarachnoid Hemorrhage/metabolism , Subarachnoid Hemorrhage/pathology
16.
Biochem Biophys Res Commun ; 527(4): 960-967, 2020 07 05.
Article in English | MEDLINE | ID: mdl-32439165

ABSTRACT

Transverse aortic constriction (TAC) has been widely used to create pressure overload induced heart failure in mice. However, this conventional model has some limitations such as low reproducibility and long creation period of cardiac failure. In order to establish a highly reproducible cardiac failure model that mimics adverse cardiac remodeling (ACR) we combined pressure overload and beta-adrenergic receptor stimuli using isoproterenol (ISO) and explored the optimal TAC model by changing the durations of TAC and the doses of ISO. Thus we constructed a suitable model for ACR with an effective combination of 3-week TAC and subsequent one-week ISO (3 mg/kg/day) infusion. Using RNA-Seq analyses, we identified that the up-regulated genes were mainly related to fibrosis including Fbn1, C1qtnf6 and Loxl2; and that the down-regulated genes were associated with mitochondrial function including Uqcrc1, Ndufs3, and Idh2 in failing hearts of our ACR model. Next, we followed the changes in cardiac function after ceasing ISO infusion. Left ventricular function gradually recovered after cessation of ISO, suggesting cardiac reverse remodeling (CRR). Gene expression signatures of hearts, which exhibited CRR, were almost identical to that of TAC hearts without ISO. In conclusion, our new model exhibits a transition to ACR and subsequent CRR with high reproducibility. This murine model might add new insights into the experiments of heart failure technically as well as scientifically.


Subject(s)
Disease Models, Animal , Heart Failure/etiology , Receptors, Adrenergic, beta/metabolism , Ventricular Remodeling , Adrenergic beta-Agonists/adverse effects , Animals , Heart/drug effects , Heart/physiopathology , Heart Failure/genetics , Heart Failure/metabolism , Heart Failure/physiopathology , Isoproterenol/adverse effects , Mice , Mice, Inbred C57BL , Pressure , Receptors, Adrenergic, beta/genetics , Transcriptome/drug effects , Ventricular Remodeling/drug effects
17.
Adv Mater ; 30(8)2018 Feb.
Article in English | MEDLINE | ID: mdl-29318666

ABSTRACT

Organometal halide perovskites have attracted widespread attention as the most favorable prospective material for photovoltaic technology because of their high photoinduced charge separation and carrier transport performance. However, the microstructural aspects within the organometal halide perovskite are still unknown, even though it belongs to a crystal system. Here direct observation of the microstructure of the thin film organometal halide perovskite using transmission electron microscopy is reported. Unlike previous reports claiming each phase of the organometal halide perovskite solely exists at a given temperature range, it is identified that the tetragonal and cubic phases coexist at room temperature, and it is confirmed that superlattices composed of a mixture of tetragonal and cubic phases are self-organized without a compositional change. The organometal halide perovskite self-adjusts the configuration of phases and automatically organizes a buffer layer at boundaries by introducing a superlattice. This report shows the fundamental crystallographic information for the organometal halide perovskite and demonstrates new possibilities as promising materials for various applications.

18.
Sci Rep ; 7(1): 16434, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29234014

ABSTRACT

Reactions in gaseous phases and at gas/solid interfaces are widely used in industry. Understanding of the reaction mechanism, namely where, when, and how these gaseous reactions proceed, is crucial for the development of further efficient reaction systems. To achieve such an understanding, it is indispensable to grasp the dynamic behavior of the gaseous molecules at the active site of the chemical reaction. However, estimation of the dynamic behavior of gaseous molecules in specific nanometer-scale regions is always accompanied by great difficulties. Here, we propose a method for the identification of the dynamic behavior of gaseous molecules using an electron spectroscopy observed with a transmission electron microscope in combination with theoretical calculations. We found that our method can successfully identify the dynamic behavior of some gaseous molecules, such as O2 and CH4, and the sensitivity of the method is affected by the rigidity of the molecule. The method has potential to measure the local temperature of gaseous molecules as well. The knowledge obtained from this technique is fundamental for further high resolution studies of gaseous reactions using electron microscopy.

19.
Mol Genet Metab Rep ; 13: 23-29, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28765812

ABSTRACT

A high intake of products containing fructose is known to mediate insulin resistance. In the liver, AMPD2, an isoform of AMPD, has important glucose metabolic homeostasis functions including maintenance of AMP-activated protein kinase (AMPK). We speculated that AMPD2 induces impaired glucose tolerance in individuals who consume a high-fructose diet. We gave either a normal-chow (NCD) or high-fructose (HFrD) diet for 40 days to 8-week-old male wild-type (WT) and Ampd2 -/- homozygote (A2 -/-) C57BL/6 mice. A glucose tolerance test (GTT) and pyruvate tolerance test (PTT) were used to evaluate glucose metabolism. In addition, gluconeogenesis and glycolysis enzymes, and AMPK phosphorylation in the liver were investigated. With consumption of the HFrD, A2 -/- mice showed enhanced glucose tolerance in GTT and PTT results as compared to the WT mice, which were independent of changes in body weight. Also, the levels of phosphoenolpyruvate carboxy kinase and glucose-6-phosphatase (hepatic gluconeogenic enzymes) were significantly reduced in A2 -/- as compared to WT mice. The hepatic glycolytic enzymes glucokinase, phosphofructokinase, and pyruvate kinase were also examined, though there were no significant differences between genotypes in regard to both mRNA expression and protein expression under HFrD. Surprisingly, hepatic AMPK phosphorylation resulted in no changes in the A2 -/- as compared to WT mice under these conditions. Our results indicated that Ampd2-deficient mice are protected from high fructose diet-induced glycemic dysregulation, mainly because of gluconeogenesis inhibition, and indicate a novel therapeutic target for type 2 diabetes mellitus.

20.
Sci Rep ; 7(1): 7168, 2017 08 02.
Article in English | MEDLINE | ID: mdl-28769032

ABSTRACT

Skeletal muscle is composed of heterogeneous populations of myofibers that are classified as slow- and fast-twitch fibers. The muscle fiber-type is regulated in a coordinated fashion by multiple genes, including transcriptional factors and microRNAs (miRNAs). However, players involved in this regulation are not fully elucidated. One of the members of the Vestigial-like factors, Vgll2, is thought to play a pivotal role in TEA domain (TEAD) transcription factor-mediated muscle-specific gene expression because of its restricted expression in skeletal muscles of adult mice. Here, we generated Vgll2 null mice and investigated Vgll2 function in adult skeletal muscles. These mice presented an increased number of fast-twitch type IIb fibers and exhibited a down-regulation of slow type I myosin heavy chain (MyHC) gene, Myh7, which resulted in exercise intolerance. In accordance with the decrease in Myh7, down-regulation of miR-208b, encoded within Myh7 gene and up-regulation of targets of miR-208b, Sox6, Sp3, and Purß, were observed in Vgll2 deficient mice. Moreover, we detected the physical interaction between Vgll2 and TEAD1/4 in neonatal skeletal muscles. These results suggest that Vgll2 may be both directly and indirectly involved in the programing of slow muscle fibers through the formation of the Vgll2-TEAD complex.


Subject(s)
Muscle Fibers, Skeletal/metabolism , Muscle Proteins/genetics , Muscle Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Gene Expression , Gene Expression Regulation , Genetic Loci , Mice , Mice, Knockout , MicroRNAs/genetics , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Slow-Twitch/metabolism , Protein Binding , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...