Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Breed Sci ; 61(5): 602-7, 2012 Jan.
Article in English | MEDLINE | ID: mdl-23136498

ABSTRACT

Soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) is one of the most damaging pests of soybean (Glycine max (L.) Merr.). Host plant resistance has been the most effective control method. Because of the spread of multiple SCN races in Hokkaido, the Tokachi Agricultural Experiment Station has bred soybeans for SCN resistance since 1953 by using 2 main resistance resources PI84751 (resistant to races 1 and 3) and Gedenshirazu (resistant to race 3). In this study, we investigated the genetic relationships of SCN resistance originating from major SCN resistance genes in Gedenshirazu and PI84751 by using SSR markers. We confirmed that race 1 resistance in PI84751 was independently controlled by 4 genes, 2 of which were rhg1 and Rhg4. We classified the PI84751- type allele of Rhg1 as rhg1-s and the Gedenshirazu-type allele of Rhg1 as rhg1-g. In the cross of the Gedenshirazu-derived race 3-resistant lines and the PI84751-derived races 1- and 3-resistant lines, the presence of rhg1-s and Rhg4 was responsible for race 1-resistance. These results indicated that it was possible to select race 1 resistant plants by using marker-assisted selection for the rhg1-s and Rhg4 alleles through a PI84751 origin × Gedenshirazu origin cross.

2.
Theor Appl Genet ; 122(3): 633-42, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20981401

ABSTRACT

In yellow soybean, seed coat pigmentation is inhibited by post-transcriptional gene silencing (PTGS) of chalcone synthase (CHS) genes. A CHS cluster named GmIRCHS (Glycine max inverted-repeat CHS pseudogene) is suggested to cause PTGS in yellow-hilum cultivars. Cold-induced seed coat discoloration (CD), a commercially serious deterioration of seed appearance, is caused by an inhibition of this PTGS upon exposure to low temperatures. In the highly CD-tolerant cultivar Toyoharuka, the GmIRCHS structure differs from that of other cultivars. The aim of this study was to determine whether the variation of GmIRCHS structure among cultivars is related to variations in CD tolerance. Using two sets of recombinant inbred lines between Toyoharuka and CD-susceptible cultivars, we compared the GmIRCHS genotype and CD tolerance phenotype during low temperature treatment. The GmIRCHS genotype was related to the phenotype of CD tolerance. A QTL analysis around GmIRCHS showed that GmIRCHS itself or a region located very close to it was responsible for CD tolerance. The variation in GmIRCHS can serve as a useful DNA marker for marker-assisted selection for breeding CD tolerance. In addition, QTL analysis of the whole genome revealed a minor QTL that also affected CD tolerance.


Subject(s)
Acyltransferases/genetics , Adaptation, Physiological/genetics , Cold Temperature , Glycine max/genetics , Inverted Repeat Sequences/genetics , Pigmentation/genetics , Seeds/genetics , Genetic Markers , Genetic Variation , Genotype , Inbreeding , Phenotype , Pseudogenes/genetics , Quantitative Trait Loci/genetics , Regression Analysis , Glycine max/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...