Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Physiol ; 50(4): 730-43, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19251745

ABSTRACT

Responses of the reduction-oxidation level of plastoquinone (PQ) in the photosynthetic electron transport (PET) system of chloroplasts to growth light intensity were evaluated in tobacco plants. Plants grown in low light (150 micromol photons m-2 s-1) (LL plants) were exposed to a high light intensity (1,100 micromol photons m-2 s-1) for 1 d. Subsequently, the plants exposed to high light (LH plants) were returned back again to the low light condition: these plants were designated as LHL plants. Both LH and LHL plants showed higher values of non-photochemical quenching of Chl fluorescence (NPQ) and the fraction of open PSII centers (qL), and lower values of the maximum quantum yield of PSII in the dark (Fv/Fm), compared with LL plants. The dependence of qL on the quantum yield of PSII [Phi(PSII)] in LH and LHL plants was higher than that in LL plants. To evaluate the effect of an increase in NPQ and decrease in Fv/Fm on qL, we derived an equation expressing qL in relation to both NPQ and Fv/Fm, according to the lake model of photoexcitation of the PSII reaction center. As a result, the heat dissipation process, shown as NPQ, did not contribute greatly to the increase in qL. On the other hand, decreased Fv/Fm did contribute to the increase in qL, i.e. the enhanced oxidation of PQ under photosynthesis-limited conditions. Thylakoid membranes isolated from LH plants, having high qL, showed a higher tolerance against photoinhibition of PSII, compared with those from LL plants. We propose a 'plastoquinone oxidation system (POS)', which keeps PQ in an oxidized state by suppressing the accumulation of electrons in the PET system in such a way as to regulate the maximum quantum yield of PSII.


Subject(s)
Chlorophyll/metabolism , Light , Nicotiana/radiation effects , Photosynthesis , Photosystem II Protein Complex/metabolism , Plastoquinone/metabolism , Acclimatization , Chlorophyll/radiation effects , Models, Biological , Oxidation-Reduction , Photosystem II Protein Complex/radiation effects , Plant Proteins/metabolism , Plant Proteins/radiation effects , Thylakoids/metabolism , Thylakoids/radiation effects , Nicotiana/metabolism , Nicotiana/physiology
2.
Physiol Plant ; 115(4): 496-503, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12121455

ABSTRACT

Although it has been shown that leaf nitrate reductase (NR: EC 1.6.6.1) is phosphorylated by subjecting plants to darkness, there is no evidence for the existence of dark-activated or dark-induced NR kinase. This study was undertaken to investigate the occurrence of a protein kinase phosphorylating NR in response to dark treatments. Immediately after transferring Komatsuna (Brassica campestris L.) plants to darkness, we observed rapid increases in the phosphorylating activity of the synthetic peptide, which is designed for the amino acid sequence surrounding the regulatory serine residue of the hinge 1 region of Komatsuna NR, in crude extracts from leaves. The activity reached a maximum after 10 min of darkness. Inactivation states of NR estimated from relative activities with or without Mg2+ were correlated to activities of the putative dark-activated protein kinase. Using the synthetic peptide as a substrate, we purified a protein kinase from dark-treated leaves by means of successive chromatographies on Q-Sepharose, Blue Sepharose, FPLC Q-Sepharose, and ATP-gamma-Sepharose columns. The purified kinase had an apparent molecular mass of 150 kDa with a catalytic subunit of 55 kDa, and it was Ca2+-independent. The purified kinase phosphorylated a recombinant cytochrome c reductase protein, a partial protein of NR, and holo NR, and inactivated NR in the presence of both 14-3-3 protein and Mg2+. The kinase also phosphorylated synthetic peptide substrates designed for sucrose phosphate synthase and 3-hydroxy-3-methylglutaryl-Coenzyme A reductase. Among inhibitors tested, only K252a, a potent and specific serine/threonine kinase inhibitor, completely inhibited the activity of the dark-activated kinase. The activity of the purified kinase was also specifically inhibited by K252a. Taken together with these findings, results obtained suggest that the putative dark-activated protein kinase may be the purified kinase itself, and may be responsible for in vivo phosphorylation of NR and its inactivation during darkness.

SELECTION OF CITATIONS
SEARCH DETAIL
...