Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 11(8)2021 08 07.
Article in English | MEDLINE | ID: mdl-34849808

ABSTRACT

Male reproduction encompasses many essential cellular processes and interactions. As a focal point for these events, sperm offer opportunities for advancing our understanding of sexual reproduction at multiple levels during development. Using male sterility genes identified in human, mouse, and fruit fly databases as a starting point, 103 Drosophila melanogaster genes were screened for their association with male sterility by tissue-specific RNAi knockdown and CRISPR/Cas9-mediated mutagenesis. This list included 56 genes associated with male infertility in the human databases, but not found in the Drosophila database, resulting in the discovery of 63 new genes associated with male fertility in Drosophila. The phenotypes identified were categorized into six distinct classes affecting sperm development. Interestingly, the second largest class (Class VI) caused sterility despite apparently normal testis and sperm morphology suggesting that these proteins may have functions in the mature sperm following spermatogenesis. We focused on one such gene, Rack 1, and found that it plays an important role in two developmental periods, in early germline cells or germline stem cells and in spermatogenic cells or sperm. Taken together, many genes are yet to be identified and their role in male reproduction, especially after ejaculation, remains to be elucidated in Drosophila, where a wealth of data from human and other model organisms would be useful.


Subject(s)
Drosophila Proteins , Infertility, Male , Animals , Drosophila/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Infertility, Male/genetics , Male , Spermatogenesis/genetics , Testis
2.
Genes Genet Syst ; 96(4): 177-186, 2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34556622

ABSTRACT

Sperm are modified substantially in passing through both the male and the female reproductive tracts, only thereafter becoming functionally competent to fertilize eggs. Drosophila sperm become motile in the seminal vesicle; after ejaculation, they interact with seminal fluid proteins and undergo biochemical changes on their surface while they are stored in the female sperm storage organs. However, the molecular mechanisms underlying these maturation processes remain largely unknown. Here, we focused on Drosophila Neprilysin genes, which are the fly orthologs of the mouse Membrane metallo-endopeptidase-like 1 (Mmel1) gene. While Mmel1 knockout male mice have reduced fertility without abnormality in either testis morphology or sperm motility, there are inconsistent results regarding the association of any Neprilysin gene with male fertility in Drosophila. We examined the association of the Nep1-5 genes with male fertility by RNAi and found that Nep4 gene function is specifically required in germline cells. To investigate this in more detail, we induced mutations in the Nep4 gene by the CRISPR/Cas9 system and isolated two mutants, both of which were viable and female fertile, but male sterile. The mutant males had normal-looking testes and sperm; during copulation, sperm were transferred to females and stored in the seminal receptacle and paired spermathecae. However, following sperm transfer and storage, three defects were observed for Nep4 mutant sperm. First, sperm were quickly discarded by the females; second, the proportion of eggs fertilized was significantly lower for mutant sperm than for control sperm; and third, most eggs laid did not initiate development after sperm entry. Taking these observations together, we conclude that the Nep4 gene is essential for sperm function following sperm transfer to females.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/genetics , Drosophila Proteins/genetics , Drosophila melanogaster , Female , Fertility/genetics , Male , Mice , Neprilysin/genetics , Sperm Motility/genetics , Spermatozoa
SELECTION OF CITATIONS
SEARCH DETAIL
...