Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
2.
Sci Rep ; 13(1): 5203, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36997629

ABSTRACT

Systemic inflammation underlies the association between obesity and nonalcoholic fatty liver disease (NAFLD). Here, we investigated functional changes in leukocytes' mitochondria in obese individuals and their associations with NAFLD. We analyzed 14 obese male Japanese university students whose body mass index was > 30 kg/m2 and 15 healthy age- and sex-matched lean university students as controls. We observed that the mitochondrial oxidative phosphorylation (OXPHOS) capacity with complex I + II-linked substrates in peripheral blood mononuclear cells (PBMCs), which was measured using a high-resolution respirometry, was significantly higher in the obese group versus the controls. The PBMCs' mitochondrial complex IV capacity was also higher in the obese subjects. All of the obese subjects had hepatic steatosis defined by a fatty liver index (FLI) score ≥ 60, and there was a positive correlation between their FLI scores and their PBMCs' mitochondrial OXPHOS capacity. The increased PBMCs' mitochondrial OXPHOS capacity was associated with insulin resistance, systemic inflammation, and higher serum levels of interleukin-6 in the entire series of subjects. Our results suggest that the mitochondrial respiratory capacity is increased in the PBMCs at the early stage of obesity, and the enhanced PBMCs' mitochondrial oxidative metabolism is associated with hepatic steatosis in obese young adults.


Subject(s)
Insulin Resistance , Non-alcoholic Fatty Liver Disease , Humans , Male , Young Adult , Non-alcoholic Fatty Liver Disease/metabolism , Leukocytes, Mononuclear/metabolism , Obesity/metabolism , Mitochondria/metabolism , Inflammation/metabolism , Oxidative Stress , Liver/metabolism
3.
Front Behav Neurosci ; 15: 787688, 2021.
Article in English | MEDLINE | ID: mdl-34880736

ABSTRACT

Due to the fact that existing pharmacological treatments for depression are not ideal, effort has been devoted to the development of complementary, alternative therapies such as physical exercise. The antidepressant effect of exercise is well documented. However, current recommendations and prescriptions of exercise may be too demanding for depressed patients, as some complain about the design of exercise programs and depression is associated with reduced motivation and capacity to exercise. Therefore, appropriately designed, patient-friendly exercise programs may prove critical for the long-term maintenance and therapeutic effects of exercise. In this pilot study, we developed an exercise program based on patients' individual level of ventilatory threshold (VT), a submaximal index of aerobic capacity measured by Cardiopulmonary Exercise Testing (CPX). Compared to traditional measures, CPX provides more trustable indices of aerobic capacity and more homogenous exercise prescriptions. The main episode of the program consisted of 15-25 min of cycling twice a week at an intensity that approached but never went higher than subjects' VT (considered low to moderate in intensity). We found that in patients diagnosed with major depressive disorder or persistent depressive disorder (n = 8), the program resulted in a significant reduction in depressive symptoms at week 8, which was maintained at week 16. Meanwhile, patients' social functioning, quality of life, and cognitive functions improved. Although we used a single arm, non-randomized design, our results suggest that even a brief, low to moderate intensity exercise program may exert therapeutic effects for depression and CPX may be a useful tool for exercise prescriptions.

4.
BMC Pharmacol Toxicol ; 22(1): 27, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33962676

ABSTRACT

BACKGROUND: Doxorubicin (DOX) is widely used as an effective chemotherapeutic agent for cancers; however, DOX induces cardiac toxicity, called DOX-induced cardiomyopathy. Although DOX-induced cardiomyopathy is known to be associated with a high cumulative dose of DOX, the mechanisms of its long-term effects have not been completely elucidated. Pioglitazone (Pio) is presently contraindicated in patients with symptomatic heart failure owing to the side effects. The concept of drug repositioning led us to hypothesize the potential effects of Pio as a premedication before DOX treatment, and to analyze this hypothesis in mice. METHODS: First, for the hyperacute (day 1) and acute (day 7) DOX-induced dysfunction models, mice were fed a standard diet with or without 0.02% (wt/wt) Pio for 5 days before DOX treatment (15 mg/kg body weight [BW] via intraperitoneal [i.p.] administration). The following 3 treatment groups were analyzed: standard diet + vehicle (Vehicle), standard diet + DOX (DOX), and Pio + DOX. Next, for the chronic model (day 35), the mice were administrated DOX once a week for 5 weeks (5 mg/kg BW/week, i.p.). RESULTS: In the acute phase after DOX treatment, the percent fractional shortening of the left ventricle (LV) was significantly decreased in DOX mice. This cardiac malfunction was improved in Pio + DOX mice. In the chronic phase, we observed that LV function was preserved in Pio + DOX mice. CONCLUSIONS: Our findings may provide a new pathophysiological explanation by which Pio plays a role in the treatment of DOX-induced cardiomyopathy, but the molecular links between Pio and DOX-induced LV dysfunction remain largely elusive.


Subject(s)
Antibiotics, Antineoplastic/adverse effects , Cardiotonic Agents/therapeutic use , Doxorubicin/adverse effects , Pioglitazone/therapeutic use , Ventricular Dysfunction, Left/prevention & control , Animals , Male , Mice, Inbred C57BL , Myocardium/pathology , Premedication , Ventricular Dysfunction, Left/chemically induced , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/pathology , Ventricular Function, Left/drug effects
5.
Cardiovasc Res ; 117(3): 805-819, 2021 02 22.
Article in English | MEDLINE | ID: mdl-32402072

ABSTRACT

AIMS: Exercise intolerance in patients with heart failure (HF) is partly attributed to skeletal muscle abnormalities. We have shown that reactive oxygen species (ROS) play a crucial role in skeletal muscle abnormalities, but the pathogenic mechanism remains unclear. Xanthine oxidase (XO) is reported to be an important mediator of ROS overproduction in ischaemic tissue. Here, we tested the hypothesis that skeletal muscle abnormalities in HF are initially caused by XO-derived ROS and are prevented by the inhibition of their production. METHODS AND RESULTS: Myocardial infarction (MI) was induced in male C57BL/6J mice, which eventually led to HF, and a sham operation was performed in control mice. The time course of XO-derived ROS production in mouse skeletal muscle post-MI was first analysed. XO-derived ROS production was significantly increased in MI mice from Days 1 to 3 post-surgery (acute phase), whereas it did not differ between the MI and sham groups from 7 to 28 days (chronic phase). Second, mice were divided into three groups: sham + vehicle (Sham + Veh), MI + vehicle (MI + Veh), and MI + febuxostat (an XO inhibitor, 5 mg/kg body weight/day; MI + Feb). Febuxostat or vehicle was administered at 1 and 24 h before surgery, and once-daily on Days 1-7 post-surgery. On Day 28 post-surgery, exercise capacity and mitochondrial respiration in skeletal muscle fibres were significantly decreased in MI + Veh compared with Sham + Veh mice. An increase in damaged mitochondria in MI + Veh compared with Sham + Veh mice was also observed. The wet weight and cross-sectional area of slow muscle fibres (higher XO-derived ROS) was reduced via the down-regulation of protein synthesis-associated mTOR-p70S6K signalling in MI + Veh compared with Sham + Veh mice. These impairments were ameliorated in MI + Feb mice, in association with a reduction of XO-derived ROS production, without affecting cardiac function. CONCLUSION: XO inhibition during the acute phase post-MI can prevent skeletal muscle abnormalities and exercise intolerance in mice with HF.


Subject(s)
Enzyme Inhibitors/pharmacology , Exercise Tolerance/drug effects , Febuxostat/pharmacology , Muscle, Skeletal/drug effects , Muscular Atrophy/prevention & control , Myocardial Infarction/drug therapy , Xanthine Oxidase/antagonists & inhibitors , Animals , Cell Hypoxia , Cell Line , Disease Models, Animal , Male , Mice, Inbred C57BL , Mitochondria, Muscle/drug effects , Mitochondria, Muscle/enzymology , Mitochondria, Muscle/pathology , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/enzymology , Muscle Fibers, Skeletal/pathology , Muscle Strength/drug effects , Muscle, Skeletal/enzymology , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Muscular Atrophy/enzymology , Muscular Atrophy/pathology , Muscular Atrophy/physiopathology , Myocardial Infarction/enzymology , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Reactive Oxygen Species/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , TOR Serine-Threonine Kinases/metabolism , Time Factors , Xanthine Oxidase/metabolism
6.
Cardiovasc Diabetol ; 19(1): 142, 2020 09 19.
Article in English | MEDLINE | ID: mdl-32950064

ABSTRACT

BACKGROUND: Although type 2 diabetes mellitus (T2DM) is one of the most frequent comorbidities in patients with chronic heart failure (CHF), the effects of T2DM on the exercise capacity of CHF patients are fully unknown. Here, we tested the hypothesis that the coexistence of T2DM lowers CHF patients' peak aerobic capacity. METHODS: We retrospectively analyzed the cases of 275 Japanese CHF patients with non-reduced ejection fraction (left ventricular ejection fraction [LVEF] ≥ 40%) or reduced EF (LVEF < 40%) who underwent cardiopulmonary exercise testing. We divided them into diabetic and nondiabetic groups in each CHF cohort. RESULTS: The mean peak oxygen uptake (VO2) value was 16.87 mL/kg/min in the non-reduced LVEF cohort and 15.52 mL/kg/min in the reduced LVEF cohort. The peak VO2 was lower in the diabetics versus the nondiabetics in the non-reduced LVEF cohort with the mean difference (95% confidence interval [95% CI]) of - 0.93 (- 1.82 to - 0.04) mL/kg/min and in the reduced LVEF cohort with the mean difference of - 1.05 (- 1.96 to - 0.15) mL/kg/min, after adjustment for age-squared, gender, anemia, renal function, LVEF, and log B-type natriuretic peptide (BNP). The adjusted VO2 at anaerobic threshold (AT), a submaximal aerobic capacity, was also decreased in the diabetic patients with both non-reduced and reduced LVEFs. Intriguingly, the diabetic patients had a lower adjusted peak O2 pulse than the nondiabetic patients in the reduced LVEF cohort, but not in the non-reduced LVEF cohort. A multivariate analysis showed that the presence of T2DM was an independent predictor of lowered peak VO2 in CHF patients with non-reduced LVEF and those with reduced LVEF. CONCLUSIONS: T2DM was associated with lowered peak VO2 in CHF patients with non-reduced or reduced LVEF. The presence of T2DM has a negative impact on CHF patients' exercise capacity, and the degree of impact is partly dependent on their LV systolic function.


Subject(s)
Anaerobic Threshold/physiology , Diabetes Mellitus, Type 2/physiopathology , Heart Failure/physiopathology , Oxygen Consumption/physiology , Adult , Aged , Cardiomyopathy, Dilated , Case-Control Studies , Diabetes Mellitus, Type 2/complications , Exercise Tolerance , Female , Heart Failure/complications , Humans , Male , Middle Aged , Myocardial Ischemia , Stroke Volume
7.
PLoS One ; 15(4): e0224713, 2020.
Article in English | MEDLINE | ID: mdl-32315296

ABSTRACT

Atrial metabolic disturbance contributes to the onset and development of atrial fibrillation (AF). Autophagy plays a role in maintaining the cellular energy balance. We examined whether atrial gene expressions related to fatty acid metabolism and autophagy are altered in chronic AF and whether they are related to each other. Right atrial tissue was obtained during heart surgery from 51 patients with sinus rhythm (SR, n = 38) or chronic AF (n = 13). Preoperative fasting serum free-fatty-acid levels were significantly higher in the AF patients. The atrial gene expression of fatty acid binding protein 3 (FABP3), which is involved in the cells' fatty acid uptake and intracellular fatty acid transport, was significantly increased in AF patients compared to SR patients; in the SR patients it was positively correlated with the right atrial diameter and intra-atrial electromechanical delay (EMD), parameters of structural and electrical atrial remodeling that were evaluated by an echocardiography. In contrast, the two groups' atrial contents of diacylglycerol (DAG), a toxic fatty acid metabolite, were comparable. Importantly, the atrial gene expression of microtubule-associated protein light chain 3 (LC3) was significantly increased in AF patients, and autophagy-related genes including LC3 were positively correlated with the atrial expression of FABP3. In conclusion, in chronic AF patients, the atrial expression of FABP3 was upregulated in association with autophagy-related genes without altered atrial DAG content. Our findings may support the hypothesis that dysregulated cardiac fatty acid metabolism contributes to the progression of AF and induction of autophagy has a cardioprotective effect against cardiac lipotoxicity in chronic AF.


Subject(s)
Atrial Fibrillation/genetics , Autophagy , Fatty Acids/metabolism , Aged , Atrial Fibrillation/metabolism , Diglycerides/metabolism , Fatty Acid Binding Protein 3/genetics , Fatty Acid Binding Protein 3/metabolism , Female , Heart Atria/metabolism , Humans , Male , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Middle Aged , Up-Regulation
8.
Eur J Pharmacol ; 866: 172810, 2020 Jan 05.
Article in English | MEDLINE | ID: mdl-31738936

ABSTRACT

Decreased exercise capacity, which is an independent predictor of the poor prognosis of patients with heart failure (HF), is attributed to markedly impaired skeletal muscle mitochondrial function and fatty acid oxidation. Previous studies reported that the administration of an inhibitor of sodium-glucose cotransporter 2 (SGLT2) increases ketone body production and fat utilization in type 2 diabetic mice. In this study, we investigated the effects of SGLT2 inhibitor administration on exercise endurance and skeletal muscle mitochondrial function with fatty acid oxidation in a murine model of HF after the induction of myocardial infarction (MI). Two weeks post-MI, HF mice were divided into 2 groups, i.e., with or without treatment with the SGLT2 inhibitor empagliflozin (Empa, 300 mg/kg of food). Consistent with previous studies, urinary glucose and blood beta-hydroxybutyrate levels were increased in the HF+Empa mice compared with the sham and HF mice 4 weeks after the start of Empa administration. Exercise endurance capacity was limited in the HF mice but was ameliorated in the HF+Empa mice, without any effects on cardiac function, food intake, spontaneous physical activity, skeletal muscle strength, and skeletal muscle weight. Mitochondrial oxidative phosphorylation capacity with fatty acid substrates was reduced in the skeletal muscle of HF mice, and this decrease was ameliorated in the HF+Empa mice. Our results demonstrate that SGLT2 inhibitors may be novel therapeutics against reduced exercise endurance capacity in HF, by improving mitochondrial fatty acid oxidation in skeletal muscle.


Subject(s)
Benzhydryl Compounds/pharmacology , Fatty Acids/metabolism , Glucosides/pharmacology , Heart Failure/physiopathology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Physical Conditioning, Animal/physiology , Physical Endurance/drug effects , 3-Hydroxybutyric Acid/blood , Adipose Tissue/drug effects , Adipose Tissue/pathology , Animals , Blood Glucose/metabolism , Disease Models, Animal , Heart Failure/blood , Heart Failure/metabolism , Heart Failure/pathology , Insulin/blood , Male , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/pathology , Muscle Strength/drug effects , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Oxidation-Reduction/drug effects , Oxidative Phosphorylation/drug effects , Recovery of Function/drug effects , Sodium-Glucose Transporter 2 Inhibitors/pharmacology
9.
Sci Rep ; 9(1): 14709, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31605012

ABSTRACT

Systemic oxidative stress plays a key role in the development of chronic heart failure (CHF). We tested the hypothesis that mitochondrial reactive oxygen species (ROS) generation in circulating peripheral blood mononuclear cells (PBMCs) contributes to CHF progression. A total of 31 patients who had a history of hospital admission due to worsening HF were enrolled and grouped as having either mild CHF defined as New York Heart Association (NYHA) functional class I-II or moderate-to-severe CHF defined as NYHA functional class III. ROS levels in PBMC mitochondria were significantly increased in CHF patients with NYHA functional class III compared to those with NYHA functional class I-II, accompanied by impaired mitochondrial respiratory capacity in PBMCs. ROS generation in PBMC mitochondria was positively correlated with urinary 8-hydroxydeoxyguanosine, a systemic oxidative stress marker, in CHF patients. Importantly, mitochondrial ROS generation in PBMCs was directly correlated with plasma levels of B-type natriuretic peptide, a biomarker for severity of HF, and inversely correlated with peak oxygen uptake, a parameter of exercise capacity, in CHF patients. The study showed that ROS generation in PBMC mitochondria was higher in patients with advanced CHF, and it was associated with disease severity and exercise intolerance in CHF patients.


Subject(s)
Exercise Tolerance , Heart Failure/physiopathology , Leukocytes, Mononuclear/metabolism , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Severity of Illness Index , 8-Hydroxy-2'-Deoxyguanosine/urine , Aged , Biomarkers/blood , Chronic Disease , Exercise Test , Female , Humans , Male , Middle Aged , Natriuretic Peptide, Brain/blood , Oxygen Consumption
10.
Sci Rep ; 9(1): 3535, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30837669

ABSTRACT

Epicardial adipose tissue (EAT), a source of adipokines, is metabolically active, but the role of EAT mitochondria in coronary artery disease (CAD) has not been established. We investigated the association between EAT mitochondrial respiratory capacity, adiponectin concentration in the EAT, and coronary atherosclerosis. EAT samples were obtained from 25 patients who underwent elective cardiac surgery. Based on the coronary angiographycal findings, the patients were divided into two groups; coronary artery disease (CAD; n = 14) and non-CAD (n = 11) groups. The mitochondrial respiratory capacities including oxidative phosphorylation (OXPHOS) capacity with non-fatty acid (complex I and complex I + II-linked) substrates and fatty acids in the EAT were significantly lowered in CAD patients. The EAT mitochondrial OXPHOS capacities had a close and inverse correlation with the severity of coronary artery stenosis evaluated by the Gensini score. Intriguingly, the protein level of adiponectin, an anti-atherogenic adipokine, in the EAT was significantly reduced in CAD patients, and it was positively correlated with the mitochondrial OXPHOS capacities in the EAT and inversely correlated with the Gensini score. Our study showed that impaired mitochondrial OXPHOS capacity in the EAT was closely linked to decreased concentration of adiponectin in the EAT and severity of coronary atherosclerosis.


Subject(s)
Adiponectin/metabolism , Adipose Tissue/metabolism , Coronary Artery Disease/metabolism , Coronary Artery Disease/pathology , Mitochondria/metabolism , Oxidative Phosphorylation , Pericardium/pathology , Adipose Tissue/pathology , Aged , Cell Respiration , Female , Humans , Male
11.
Circ J ; 82(11): 2753-2760, 2018 10 25.
Article in English | MEDLINE | ID: mdl-30175799

ABSTRACT

BACKGROUND: Oxygen uptake (V̇O2) at peak workload and anaerobic threshold (AT) workload are often used for grading heart failure (HF) severity and predicting all-cause mortality. The clinical relevance of respiratory exchange ratio (RER) during exercise, however, is unknown. Methods and Results: We retrospectively studied 295 HF patients (57±15 years, NYHA class I-III) who underwent cardiopulmonary exercise testing. RER was measured at rest; at AT workload; and at peak workload. Peak V̇O2 had an inverse correlation with RER at AT workload (r=-0.256), but not at rest (r=-0.084) or at peak workload (r=0.090). Using median RER at AT workload, we divided the patients into high RER (≥0.97) and low RER (<0.97) groups. Patients with high RER at AT workload were characterized by older age, lower body mass index, anemia, and advanced NYHA class. After propensity score matching, peak V̇O2 tended to be lower in the high-RER than in the low-RER group (14.9±4.5 vs. 16.1±5.0 mL/kg/min, P=0.06). On Kaplan-Meier analysis, HF patients with a high RER at AT workload had significantly worse clinical outcomes, including all-cause mortality and rate of readmission due to HF worsening over 3 years (29% vs. 15%, P=0.01). CONCLUSIONS: High RER during submaximal exercise, particularly at AT workload, is associated with poor clinical outcome in HF patients.


Subject(s)
Exercise Therapy , Heart Failure , Adult , Aged , Disease-Free Survival , Exercise Test , Female , Heart Failure/mortality , Heart Failure/physiopathology , Heart Failure/therapy , Heart Rate , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Respiratory Function Tests , Retrospective Studies , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...