Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Sci ; 153(1): 55-67, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37524455

ABSTRACT

Microglial removal of dying cells plays a beneficial role in maintaining homeostasis in the CNS, whereas under some pathological conditions, inflammatory microglia can cause excessive clearance, leading to neuronal death. However, the mechanisms underlying dying cell removal by inflammatory microglia remain poorly understood. In this study, we performed live imaging to examine the purinergic regulation of dying cell removal by inflammatory activated microglia. Lipopolysaccharide (LPS) stimulation induces rapid death of primary rat microglia, and the surviving microglia actively remove dying cells. The nonselective P2 receptor antagonist, suramin, inhibited dying cell removal to the same degree as that of the selective P2Y2 antagonist, AR-C118925. This inhibition was more potent in LPS-stimulated microglia than in non-stimulated ones. LPS stimulation elicited distribution of the P2Y2 receptor on the leading edge of the plasma membrane and then induced drastic upregulation of P2Y2 receptor mRNA expression in microglia. LPS stimulation caused upregulation of the dying cell-sensing inflammatory Axl phagocytic receptor, which was suppressed by blocking the P2Y2 receptor and its downstream signaling effector, proline-rich tyrosine kinase (Pyk2). Together, these results indicate that inflammatory stimuli may activate the P2Y2 receptor, thereby mediating dying cell removal, at least partially, through upregulating phagocytic Axl in microglia.


Subject(s)
Lipopolysaccharides , Microglia , Rats , Animals , Microglia/metabolism , Lipopolysaccharides/pharmacology , Signal Transduction , Protein-Tyrosine Kinases/metabolism , Apoptosis
2.
Neurobiol Dis ; 172: 105811, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35809764

ABSTRACT

Glaucoma is an optic neuropathy and is currently one of the most common diseases that leads to irreversible blindness. The axonal degeneration that occurs before retinal ganglion neuronal loss is suggested to be involved in the pathogenesis of glaucoma. G protein-coupled receptor 3 (GPR3) belongs to the class A rhodopsin-type GPCR family and is highly expressed in various neurons. GPR3 is unique in its ability to constitutively activate the Gαs protein without a ligand, which elevates the basal intracellular cAMP level. Our earlier reports suggested that GPR3 enhances both neurite outgrowth and neuronal survival. However, the potential role of GPR3 in axonal regeneration after neuronal injury has not been elucidated. Herein, we investigated retinal GPR3 expression and its possible involvement in axonal regeneration after retinal injury in mice. GPR3 was relatively highly expressed in retinal ganglion cells (RGCs). Surprisingly, RGCs in GPR3 knockout mice were vulnerable to neural death during aging without affecting high intraocular pressure (IOP) and under ischemic conditions. Primary cultured neurons from the retina showed that GPR3 expression was correlated with neurite outgrowth and neuronal survival. Evaluation of the effect of GPR3 on axonal regeneration using GPR3 knockout mice revealed that GPR3 in RGCs participates in axonal regeneration after optic nerve crush (ONC) under zymosan stimulation. In addition, regenerating axons were further stimulated when GPR3 was upregulated in RGCs, and the effect was further augmented when combined with zymosan treatment. These results suggest that GPR3 expression in RGCs helps maintain neuronal survival and accelerates axonal regeneration after ONC in mice.


Subject(s)
Glaucoma , Optic Nerve Injuries , Animals , Axons/pathology , Glaucoma/metabolism , Mice , Mice, Knockout , Nerve Crush , Nerve Regeneration/physiology , Optic Nerve , Optic Nerve Injuries/pathology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Retinal Ganglion Cells/metabolism , Zymosan/metabolism , Zymosan/pharmacology
3.
J Pharmacol Sci ; 148(3): 307-314, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35177210

ABSTRACT

G protein-coupled receptor 3 (GPR3) constitutively activates Gαs proteins without any ligands and is predominantly expressed in neurons. Since the expression and physiological role of GPR3 in immune cells is still unknown, we examined the possible role of GPR3 in T lymphocytes. The expression of GPR3 was upregulated 2 h after phorbol 12-myristate 13-acetate (PMA)/ionomycin stimulation and was sustained in Jurkat cells, a human T lymphocyte cell line. In addition, the expression of nuclear receptor 4 group A member 2 (NR4A2) was highly modulated by GPR3 expression. Additionally, GPR3 expression was linked with the transcriptional promoter activity of NR4A in Jurkat cells. In mouse CD4+ T cells, transient GPR3 expression was induced immediately after the antigen receptor stimulation. However, the expression of NR4A2 was not modulated in CD4+ T cells from GPR3-knockout mice after stimulation, and the population of Treg cells in thymocytes and splenocytes was not affected by GPR3 knockout. By contrast, spontaneous effector activation in both CD4+ T cells and CD8+ T cells was observed in GPR3-knockout mice. In summary, GPR3 is immediately induced by T cell stimulation and play an important role in the suppression of effector T cell activation.


Subject(s)
Lymphocyte Activation/genetics , Receptors, G-Protein-Coupled/physiology , T-Lymphocytes/immunology , Animals , Cell Line , Chromogranins/metabolism , Cyclic AMP/metabolism , GTP-Binding Protein alpha Subunits, Gs/metabolism , Gene Expression , Mice, Knockout , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , T-Lymphocytes/metabolism
4.
Mol Cell Neurosci ; 118: 103691, 2022 01.
Article in English | MEDLINE | ID: mdl-34871769

ABSTRACT

During neuronal development, immature neurons extend neurites and subsequently polarize to form an axon and dendrites. We have previously reported that G protein-coupled receptor 3 (GPR3) levels increase during neuronal development, and that GPR3 has functions in neurite outgrowth and neuronal differentiation in cerebellar granular neurons. Moreover, GPR3 is transported and concentrated at the tips of neurite, thereby contributing to the local activation of protein kinase A (PKA). However, the signaling pathways for GPR3-mediated neurite outgrowth and its subsequent effects on neuronal polarization have not yet been elucidated. We therefore analyzed the signaling pathways related to GPR3-mediated neurite outgrowth, and also focused on the possible roles of GPR3 in axon polarization. We demonstrated that, in cerebellar granular neurons, GPR3-mediated neurite outgrowth was mediated by multiple signaling pathways, including those of PKA, extracellular signal-regulated kinases (ERKs), and most strongly phosphatidylinositol 3-kinase (PI3K). In addition, the GPR3-mediated activation of neurite outgrowth was associated with G protein-coupled receptor kinase 2 (GRK2)-mediated signaling and phosphorylation of the C-terminus serine/threonine residues of GPR3, which affected downstream protein kinase B (Akt) signaling. We further demonstrated that GPR3 was transiently increased early in the development of rodent hippocampal neurons. It was subsequently concentrated at the tip of the longest neurite, and was thus associated with accelerated polarity formation in a PI3K-dependent manner in rat hippocampal neurons. In addition, GPR3 knockout in mouse hippocampal neurons led to delayed neuronal polarity formation, thereby affecting the dephosphorylation of collapsing response mediator protein 2 (CRMP2), which is downstream of the PI3K signaling pathway. Taken together, these findings suggest that the intrinsic expression of GPR3 in differentiated neurons constitutively activates PI3K-mediated signaling pathway predominantly, thus accelerating neurite outgrowth and further augmenting polarity formation in primary cultured neurons.


Subject(s)
Neurons , Phosphatidylinositol 3-Kinases , Receptors, G-Protein-Coupled , Animals , Cyclic AMP-Dependent Protein Kinases/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Mice , Neurites/metabolism , Neuronal Outgrowth , Neurons/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Rats , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
5.
Neurochem Int ; 93: 82-94, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26802935

ABSTRACT

Toll-like receptor (TLR) 4 mediates inflammation and is also known to trigger apoptosis in microglia. Our time-lapse observations showed that lipopolysaccharide (LPS) stimulation induced rapid death in primary cultures of rat microglia, while a portion of the microglia escaped from death and survived for much longer than 2 days, in which time, all of the control cells had died. However, it remains unclear how the LPS-stimulated microglia subpopulation could continue to survive in the absence of any supplied growth factors. In the present study, to clarify the mechanism underlying the LPS-stimulated survival, we investigated whether microglia could produce their own survival factors in response to LPS, focusing on macrophage colony-stimulating factor (M-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-34, which are mainly supplied by astrocytes or neurons. The LPS-stimulated microglia drastically induced the expression of the GM-CSF mRNA and protein, while M-CSF and IL-34 levels were unchanged. The surviving microglia also significantly upregulated the expression of GM-CSF receptor (GM-CSFR) mRNA without affecting M-CSFR. As for the GM-CSFR downstream signal, LPS resulted in the phosphorylation of STAT5 and its translocation to the nucleus in the surviving microglia. Moreover, a specific JAK2 inhibitor, NVP-BSK805, suppressed STAT5 phosphorylation and microglia survival in response to LPS, indicating a critical role of the JAK2/STAT5 pathway in this survival mechanism. Together, these results suggest that a subpopulation of TLR4-activated microglia may survive by producing GM-CSF and up-regulating GM-CSFR. This autocrine GM-CSF pathway may activate the JAK2/STAT5 signaling pathway, which controls the transcription of survival-related genes. Finally, these surviving microglia may have neuroprotective functions because the neurons remained viable in co-cultures with these microglia.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Janus Kinase 2/metabolism , Microglia/metabolism , STAT5 Transcription Factor/metabolism , Toll-Like Receptor 4/physiology , Animals , Cells, Cultured , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...