Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Main subject
Publication year range
1.
ACS Appl Mater Interfaces ; 13(4): 5861-5865, 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33494591

ABSTRACT

Solid-state lithium (Li) batteries using spinel-oxide electrode materials such as LiNi0.5Mn1.5O4 are promising power supplies for mobile devices and electric vehicles. Here, we demonstrate stable battery cycling between the Li0Ni0.5Mn1.5O4 and Li2Ni0.5Mn1.5O4 phases with working voltages of approximately 2.9 and 4.7 V versus Li/Li+ in solid-state Li batteries with contamination-free clean Li3PO4/LiNi0.5Mn1.5O4 interfaces. This clean interface has the effect of doubling the capacity of conventional battery cycling between the Li0Ni0.5Mn1.5O4 and Li1Ni0.5Mn1.5O4 phases. We also investigated the structural changes between the Li0Ni0.5Mn1.5O4 and Li2Ni0.5Mn1.5O4 phases during battery cycling. Furthermore, we found an inhomogeneous distribution of the Li2Ni0.5Mn1.5O4 phase in the LiNi0.5Mn1.5O4 electrode, induced by spontaneous Li migration after the formation of the Li3PO4/LiNi0.5Mn1.5O4 interface. These results indicate that the formation of a contamination-free clean Li3PO4/LiNi0.5Mn1.5O4 interface is key to increase the battery capacity.

2.
ACS Appl Mater Interfaces ; 10(48): 41732-41737, 2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30465729

ABSTRACT

Using synchrotron surface X-ray diffraction, we investigated the atomic structures of the interfaces of a solid electrolyte (Li3PO4) and electrode (LiCoO2). We prepared two types of interfaces with high and low interface resistances; the low-resistance interface exhibited a flat and well-ordered atomic arrangement at the electrode surface, whereas the high-resistance interface showed a disordered interface. These results indicate that the crystallinity of LiCoO2 at the interface has a significant impact on interface resistance. Furthermore, we reveal that the migration of Li ions along the interface and into grain boundaries and antiphase domain boundaries is a critical factor reducing interface resistance.

3.
ACS Appl Mater Interfaces ; 10(32): 27498-27502, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-29989389

ABSTRACT

Solid-state Li batteries containing Li(Ni0.5Mn1.5)O4 as a 5 V-class positive electrode are expected to revolutionize mobile devices and electric vehicles. However, practical applications of such batteries are hampered by the high resistance at their solid electrolyte/electrode interfaces. Here, we achieved an extremely low electrolyte/electrode interface resistance of 7.6 Ω cm2 in solid-state Li batteries with Li(Ni0.5Mn1.5)O4. Furthermore, we observed spontaneous migration of Li ions from the solid electrolyte to the positive electrode after the formation of the electrolyte/electrode interface. Finally, we demonstrated stable fast charging and discharging of the solid-state Li batteries at a current density of 14 mA/cm2. These results provide a solid foundation to understand and fabricate low-resistance electrolyte/electrode interfaces.


Subject(s)
Electrolytes , Electric Power Supplies , Electrodes , Ions , Lithium , Oxygen , Phosphates
4.
Phys Rev Lett ; 119(8): 086801, 2017 Aug 25.
Article in English | MEDLINE | ID: mdl-28952762

ABSTRACT

We report the observation of coherent surface states on cubic perovskite oxide SrVO_{3}(001) thin films through spectroscopic-imaging scanning tunneling microscopy. A direct link between the observed quasiparticle interference patterns and the formation of a d_{xy}-derived surface state is supported by first-principles calculations. We show that the apical oxygens on the topmost VO_{2} plane play a critical role in controlling the coherent surface state via modulating orbital state.

5.
Nat Commun ; 8: 15975, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28671187

ABSTRACT

Unique superconductivity at surfaces/interfaces, as exemplified by LaAlO3/SrTiO3 interfaces, and the high transition temperature in ultrathin FeSe films, have triggered intense debates on how superconductivity is affected in atomic and electronic reconstructions. The surface of superconducting cubic spinel oxide LiTi2O4 is another interesting system because its inherent surface electronic and atomic reconstructions add complexity to superconducting properties. Investigations of such surfaces are hampered by the lack of single crystals or high-quality thin films. Here, using low-temperature scanning tunnelling microscopy and spectroscopy, we report an unexpected small superconducting energy gap and a long coherence length on the surface of LiTi2O4(111) epitaxial thin films. Furthermore, we find that a pseudogap opening at the Fermi energy modifies the surface superconductivity. Our results open an avenue for exploring anomalous superconductivity on the surface of cubic transition-metal oxides, where the electronic states are spontaneously modulated involving rich many-body interactions.

6.
ACS Nano ; 9(12): 12035-44, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26588477

ABSTRACT

We use self-assembly to fabricate and to connect precise graphene nanoribbons end to end. Combining scanning tunneling microscopy, Raman spectroscopy, and density functional theory, we characterize the chemical and electronic aspects of the interconnections between ribbons. We demonstrate how the substrate effects of our self-assembly can be exploited to fabricate graphene structures connected to desired electrodes.

7.
ACS Nano ; 9(9): 8766-72, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26291512

ABSTRACT

The electronic structures and macroscopic functionalities of two-dimensional (2D) materials are often controlled according to their size, atomic structures, and associated defects. This controllability is particularly important in ultrathin 2D nanosheets of transition-metal oxides because these materials exhibit extraordinary multifunctionalities that cannot be realized in their bulk constituents. To expand the variety of materials with exotic properties that can be used in 2D transition-metal-oxide nanosheets, it is essential to investigate fabrication processes for 2D materials. However, it remains challenging to fabricate such 2D nanosheets, as they are often forbidden because of the crystal structure and nature of their host oxides. In this study, we demonstrate the synthesis of a single-atom-thick TiO2 2D nanosheet with a periodic array of holes, that is, a TiO2 nanomesh, by depositing a LaAlO3 thin film on a SrTiO3(001)-(√13×√13)-R33.7° reconstructed substrate. In-depth investigations of the detailed structures, local density of states, and Ti valency of the TiO2 nanomesh using scanning tunneling microscopy/spectroscopy, scanning transmission electron microscopy, and density functional theory calculations reveal an unexpected upward migration of the Ti atoms of the substrate surface onto the LaAlO3 surface. These results indicate that the truncated TiO5 octahedra on the surface of perovskite oxides are very stable, leading to semiconducting TiO2 nanomesh formation. This nanomesh material can be potentially used to control the physical and chemical properties of the surfaces of perovskite oxides. Furthermore, this study provides an avenue for building functional atomic-scale oxide 2D structures and reveals the thin-film growth processes of complex oxides.

9.
Nano Lett ; 15(3): 1498-502, 2015 Mar 11.
Article in English | MEDLINE | ID: mdl-25710500

ABSTRACT

In this paper, we report the surprisingly low electrolyte/electrode interface resistance of 8.6 Ω cm(2) observed in thin-film batteries. This value is an order of magnitude smaller than that presented in previous reports on all-solid-state lithium batteries. The value is also smaller than that found in a liquid electrolyte-based batteries. The low interface resistance indicates that the negative space-charge layer effects at the Li3PO(4-x)N(x)/LiCoO2 interface are negligible and demonstrates that it is possible to fabricate all-solid state batteries with faster charging/discharging properties.

10.
ACS Nano ; 8(9): 9181-7, 2014 Sep 23.
Article in English | MEDLINE | ID: mdl-25162921

ABSTRACT

We produce precise chiral-edge graphene nanoribbons on Cu{111} using self-assembly and surface-directed chemical reactions. We show that, using specific properties of the substrate, we can change the edge conformation of the nanoribbons, segregate their adsorption chiralities, and restrict their growth directions at low surface coverage. By elucidating the molecular-assembly mechanism, we demonstrate that our method constitutes an alternative bottom-up strategy toward synthesizing defect-free zigzag-edge graphene nanoribbons.

11.
Phys Rev Lett ; 111(3): 036101, 2013 Jul 19.
Article in English | MEDLINE | ID: mdl-23909339

ABSTRACT

We present an analytical model to quantitatively study the effect of collisions between the atoms of a plume and the molecules of a surrounding gas on the nonstoichiometry of lithium-containing oxide thin films deposited using pulsed laser deposition. A comparison of the experimental data and the model ascertain the inevitable loss of the lighter cation, leading to a nonstoichiometric reduction in the content of lighter cations in the films. Our model is the first analytic model of collision-induced plume expansion that can explain the partial oxygen pressure dependence of the Li content of a thin film. These studies have important implications for collision effects that affect the growth of thin films containing both light and heavy elements.

12.
J Synchrotron Radiat ; 20(Pt 4): 620-5, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23765305

ABSTRACT

The observation method of photoemission electron microscopy (PEEM) on insulating samples has been established in an extremely simple way. Surface conductivity is induced locally on an insulating surface by continuous radiation of soft X-rays, and Au films close to the area of interest allow the accumulated charges on the insulated area to be released to ground level. Magnetic domain observations of a NiZn ferrite, local X-ray absorption spectroscopy of sapphire, high-resolution imaging of a poorly conducting Li0.9CoO2 film surface, and Au pattern evaporation on a fine rock particle are demonstrated. Using this technique, all users' experiments on poorly conducting samples have been performed successfully at the PEEM experimental station of SPring-8.

13.
ACS Nano ; 5(10): 7967-71, 2011 Oct 25.
Article in English | MEDLINE | ID: mdl-21905666

ABSTRACT

The initial homoepitaxial growth of SrTiO(3) on a (√13 × âˆš13)-R33.7° SrTiO(3)(001) substrate surface, which can be prepared under oxide growth conditions, is atomically resolved by scanning tunneling microscopy. The identical (√13 × âˆš13) atomic structure is clearly visualized on the deposited SrTiO(3) film surface as well as on the substrate. This result indicates the transfer of the topmost Ti-rich (√13 × âˆš13) structure to the film surface and atomic-scale coherent epitaxy at the film/substrate interface. Such atomically ordered SrTiO(3) substrates can be applied to the fabrication of atom-by-atom controlled oxide epitaxial films and heterostructures.

14.
Phys Rev Lett ; 106(18): 187201, 2011 May 06.
Article in English | MEDLINE | ID: mdl-21635122

ABSTRACT

The successive spectral evolution of the Kondo resonance state was investigated from a single iron(II) phthalocyanine molecule to the two-dimensional lattice on Au(111) by interrogating the individual molecules with a scanning tunneling microscope. A sharp Kondo peak appears in the single-impurity regime, which broadens and splits as the lattice builds up. The origin of spectral evolution together with the electronic ground state of the lattice are discussed based on the competition of the Kondo effect and Rudermann-Kittel-Kasuya-Yosida coupling between the molecular spins.

15.
Phys Rev Lett ; 102(16): 167203, 2009 Apr 24.
Article in English | MEDLINE | ID: mdl-19518750

ABSTRACT

We examined the zero-field splitting of an iron(II) phthalocyanine (FePc) attached to clean and oxidized Cu(110) surfaces and the dependence on an applied magnetic field by inelastic electron tunneling spectroscopy with STM. The symmetry of the ligand field surrounding the Fe atom is lowered on the oxidized surface, switching the magnetic anisotropy from the easy plane of the bulk to the easy axis. The zero-field splitting was not observed for FePc on a clean Cu(110) surface, and the spin state converts from triplet to singlet due to the strong coupling of Fe d states with the Cu substrate, as is also confirmed by photoelectron spectroscopy. These findings demonstrate the importance of coupling at the molecule-substrate interface for manipulating the magnetic properties of adsorbates.

16.
Phys Rev Lett ; 92(9): 096102, 2004 Mar 05.
Article in English | MEDLINE | ID: mdl-15089491

ABSTRACT

We fabricated monatomic Fe wires on vicinal Au(111) surfaces and found that decoration of step edges with Fe adatoms has a significant influence on the behavior of surface state electrons confined between regularly arranged steps. On a surface with Fe monatomic rows, angle-resolved photoemission spectra measured in the direction perpendicular to the steps shows parabolic dispersion, in contrast to one-dimensional quantum-well levels observed on a clean surface. Simple analysis using a one-dimensional Kronig-Penney model reveals potential barrier reduction from 20 to 4.6 eV A, suggesting an attractive nature of the Fe adatoms as scatterers.

SELECTION OF CITATIONS
SEARCH DETAIL
...