Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(8): 9463-9474, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38434845

ABSTRACT

In the pursuit of optimal quantitative structure-activity relationship (QSAR) models, two key factors are paramount: the robustness of predictive ability and the interpretability of the model. Symbolic regression (SR) searches for the mathematical expressions that explain a training data set. Thus, the models provided by SR are globally interpretable. We previously proposed an SR method that can generate interpretable expressions by humans. This study introduces an enhanced symbolic regression method, termed filter-induced genetic programming 2 (FIGP2), as an extension of our previously proposed SR method. FIGP2 is designed to improve the generalizability of SR models and to be applicable to data sets in which cost-intensive descriptors are employed. The FIGP2 method incorporates two major improvements: a modified domain filter to eradicate diverging expressions based on optimal calculation and the introduction of a stability metric to penalize expressions that would lead to overfitting. Our retrospective comparative analysis using 12 structure-activity relationship data sets revealed that FIGP2 surpassed the previously proposed SR method and conventional modeling methods, such as support vector regression and multivariate linear regression in terms of predictive performance. Generated mathematical expressions by FIGP2 were relatively simple and not divergent in the domain of function. Taken together, FIGP2 can be used for making interpretable regression models with predictive ability.

2.
Commun Chem ; 5(1): 158, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36697881

ABSTRACT

Acceleration of material discovery has been tackled by informatics and laboratory automation. Here we show a semi-automated material exploration scheme to modelize the solubility of tetraphenylporphyrin derivatives. The scheme involved the following steps: definition of a practical chemical search space, prioritization of molecules in the space using an extended algorithm for submodular function maximization without requiring biased variable selection or pre-existing data, synthesis & automated measurement, and machine-learning model estimation. The optimal evaluation order selected using the algorithm covered several similar molecules (32% of all targeted molecules, whereas that obtained by random sampling and uncertainty sampling was ~7% and ~4%, respectively) with a small number of evaluations (10 molecules: 0.13% of all targeted molecules). The derived binary classification models predicted 'good solvents' with an accuracy >0.8. Overall, we confirmed the effectivity of the proposed semi-automated scheme in early-stage material search projects for accelerating a wider range of material research.

3.
PLoS One ; 15(9): e0239933, 2020.
Article in English | MEDLINE | ID: mdl-32997718

ABSTRACT

Crystal structure prediction has been one of the fundamental and challenging problems in materials science. It is computationally exhaustive to identify molecular conformations and arrangements in organic molecular crystals due to complexity in intra- and inter-molecular interactions. From a geometrical viewpoint, specific types of organic crystal structures can be characterized by ellipsoid packing. In particular, we focus on aromatic systems which are important for organic semiconductor materials. In this study, we aim to estimate the ellipsoidal molecular shapes of such crystals and predict them from single molecular descriptors. First, we identify the molecular crystals with molecular centroid arrangements that correspond to affine transformations of four basic cubic lattices, through topological analysis of the dataset of crystalline polycyclic aromatic molecules. The novelty of our method is that the topological data analysis is applied to arrangements of molecular centroids intead of those of atoms. For each of the identified crystals, we estimate the intracrystalline molecular shape based on the ellipsoid packing assumption. Then, we show that the ellipsoidal shape can be predicted from single molecular descriptors using a machine learning method. The results suggest that topological characterization of molecular arrangements is useful for structure prediction of organic semiconductor materials.


Subject(s)
Models, Molecular , Polycyclic Aromatic Hydrocarbons/chemistry , Crystallization , Molecular Conformation
4.
J Chem Phys ; 139(1): 014707, 2013 Jul 07.
Article in English | MEDLINE | ID: mdl-23822320

ABSTRACT

Hopping and band mobilities of holes in organic semiconductors at room temperature were estimated from first principle calculations. Relaxation times of charge carriers were evaluated using the acoustic deformation potential model. It is found that van der Waals interactions play an important role in determining accurate relaxation times. The hopping mobilities of pentacene, rubrene, and 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) in bulk single crystalline structures were found to be smaller than 4 cm(2)∕Vs, whereas the band mobilities were estimated between 36 and 58 cm(2)∕Vs, which are close to the maximum reported experimental values. This strongly suggests that band conductivity is dominant in these materials even at room temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...