Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Histochem ; 112(3): 270-7, 2010 May.
Article in English | MEDLINE | ID: mdl-19403161

ABSTRACT

In the present study, we evaluated the osteogenic potential of an autogenous bone marrow graft combined with beta-tricalcium phosphate (beta-TCP) in a rat calvarial bone defect model. The bone marrow harvested from the tibia of 7-week-old rats was grafted autogenously in a calvarial defect together with beta-TCP (=BTG group, n=16) or without beta-TCP (=BG group, n=16). Groups of animals were also treated with beta-TCP alone (=TG group, n=16) and control animals (n=8) received no graft implanted into the defect. We then observed the process of bone formation by histology, enzyme histochemistry and immunohistochemistry. Five days after grafting, in the BTG and BG groups, cell proliferation and osteogenic differentiation were observed. From 5 to 10 days after surgery, active Runx2, osteopontin (OPN), and TRAP- positive cells appeared in the BTG and BG groups. New bone formation started in the defect in both the BTG and BG groups. At 30 days after grafting, the BTG group showed new bone development and replacement of beta-TCP to fill the bone defect. New bone formation in the BTG group was significantly greater than in the BG group (P<0.01). The TG group showed no marked bone formation in the defect. The combination graft of bone marrow with beta-TCP showed marked bone formation in rat calvarial defects. Our results indicate that the combination grafts of bone marrow with beta-TCP may be an effective technique for repairing bone defects Beta-TCPgraft (TG) group.


Subject(s)
Biocompatible Materials/pharmacology , Bone Marrow Cells/metabolism , Bone Marrow Transplantation , Bone Regeneration , Calcium Phosphates/pharmacology , Osteogenesis , Acid Phosphatase/metabolism , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Bone Substitutes/pharmacology , Cell Differentiation , Cell Proliferation , Core Binding Factor Alpha 1 Subunit/metabolism , Disease Models, Animal , Isoenzymes/metabolism , Male , Osteogenesis/drug effects , Osteogenesis/physiology , Osteopontin/metabolism , Rats , Skull/injuries , Skull/pathology , Tartrate-Resistant Acid Phosphatase , Tissue Engineering , Wound Healing/drug effects , Wound Healing/physiology
2.
J Biomed Mater Res A ; 88(3): 599-607, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-18314893

ABSTRACT

Bone morphogenetic protein (BMP)-2 plays an important role in bone growth and regeneration; however, BMP-2 is easily lost by diffusion through body fluid and has some inhibitory pathways. To address this problem, we previously immobilized recombinant human BMP-2 (rhBMP-2) on succinylated type I atelocollagen. Here, we examined the effect of immobilized rhBMP-2 in vitro and vivo. In ST2, MC3T3-E1, and C2C12 cells, alkaline phosphatase activity, which is a marker of osteoblast differentiation, was enhanced more by immobilized than nonimmobilized rhBMP-2. In addition, the phosphorylation of receptor-activated Smads, part of the signaling pathway activated by BMP-2, was prolonged by immobilized rhBMP-2 in these cells. Furthermore, implantation of immobilized rhBMP-2 into the backs of rats promoted the formation of mature bone-like structure. These results demonstrate that immobilized rhBMP-2 has higher bioactivity than nonimmobilized rhBMP-2, and, therefore, immobilization of rhBMP-2 can prolong BMP signaling.


Subject(s)
Bone Morphogenetic Proteins/pharmacology , Recombinant Proteins/pharmacology , Smad Proteins/metabolism , Transforming Growth Factor beta/pharmacology , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Animals , Bone Morphogenetic Protein 2 , Bone Morphogenetic Proteins/chemistry , Cell Line , Collagen Type I/genetics , Gene Expression Regulation/drug effects , Humans , Mice , Osteocalcin/genetics , Osteopontin/genetics , Phosphorylation/drug effects , Prosthesis Implantation , RNA, Messenger/genetics , Rats , Recombinant Proteins/chemistry , Transforming Growth Factor beta/chemistry
3.
Acta Med Okayama ; 62(1): 59-62, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18323872

ABSTRACT

Dental reconstruction in the cleft space is difficult in some patients with cleft lip and palate because of oronasal fistulas. Most of these patients receive a particle cancellous bone marrow (PCBM) graft to close the alveolar cleft, and secondary bone grafting is also required. Treatment options for the alveolar cleft including fixed or removable prostheses require the preparation of healthy teeth and are associated with functional or social difficulties. Recently, the effectiveness of dental implant treatment for cleft lip and palate patients has been reported. However, there have been few reports on the use of this treatment in bilateral cleft lip and palate patients. We report the case of a patient who had bilateral cleft lip and palate and was missing both lateral incisors. She received dental implant treatment after a PCBM graft and ramus bone onlay grafting (RBOG). A 34-month postoperative course was uneventful.


Subject(s)
Cleft Lip/surgery , Cleft Palate/surgery , Dental Implants , Adult , Bone Transplantation , Cleft Lip/pathology , Cleft Palate/pathology , Female , Humans , Incisor , Plastic Surgery Procedures
4.
Acta Histochem ; 110(3): 217-23, 2008.
Article in English | MEDLINE | ID: mdl-18082248

ABSTRACT

Both periosteum and bone marrow have the potential to induce heterotopic bone when grafted. Whether the process of bone formation is controlled by the recipient environment where the donor graft is placed or by factors from the donor site is not well documented. The purpose of this study was to examine the histology of new bone induced by either autogenously grafted periosteum or autogenously grafted bone marrow using the rat calvarial defect model in Sprague-Dawley rats. Grafts of either bone marrow or periosteum obtained from tibias were placed in calvarial defects with beta-tricalcium phosphate. Ten days after grafting, active cell proliferation was observed in the defects of both types of grafts. After 20 days, cancellous bone formation was observed in the defects with bone marrow grafts, and intramembranous bone formation was observed in the defects with periosteal grafts. After 30 days, bone marrow grafts had developed bone with a bone marrow-like structure, and the periosteal grafts had produced cortical bone structure in the defects. The findings suggest that the type of bone formation is determined by characteristics of the donor site.


Subject(s)
Bone Marrow Transplantation/methods , Osteogenesis/physiology , Periosteum/transplantation , Animals , Biocompatible Materials/pharmacology , Bone Transplantation/methods , Calcium Phosphates/pharmacology , Histological Techniques , Models, Biological , Osteogenesis/drug effects , Periosteum/cytology , Rats , Rats, Sprague-Dawley , Skull/surgery , Tibia/surgery , Transplantation, Autologous
5.
Ann Plast Surg ; 59(6): 707-12, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18046157

ABSTRACT

We investigated the osteogenic potential of a combination graft of beta-tricalcium phosphate (TCP) and periosteum in the rat calvarial defect model. The combination beta-TCP and periosteum graft was grafted into rat calvarial defects; the newly formed bone in the defect was studied histologically and radiographically and compared with periosteum grafts and TCP grafts. Ten days after combination grafting, the grafted periosteum showed cell proliferation and Runx2 immunoreaction; 20 days after grafting, new bone formation was seen around the beta-TCP; and 30 days after grafting, new bone developed and actively replaced beta-TCP, while radiography showed calcified areas. Total bone formation of the combination periosteum and beta-TCP graft was significantly increased compared with single grafts of beta-TCP or periosteum (P < 0.01). The combination graft of periosteum and beta-TCP showed marked bone formation in rat calvarial defects. This result suggests that combination grafts may be effective for repairing bone defects.


Subject(s)
Calcium Phosphates/pharmacology , Osteogenesis/drug effects , Periosteum/drug effects , Periosteum/transplantation , Animals , Calcium Phosphates/administration & dosage , Male , Rats , Rats, Sprague-Dawley , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...