Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Heart Vessels ; 2024 May 26.
Article in English | MEDLINE | ID: mdl-38797744

ABSTRACT

It remains to be elucidated whether Ca2+ antagonists induce pharmacological preconditioning to protect the heart against ischemia/reperfusion injury. The aim of this study was to determine whether and how pretreatment with a Ca2+ antagonist, azelnidipine, could protect cardiomyocytes against hypoxia/reoxygenation (H/R) injury in vitro. Using HL-1 cardiomyocytes, we studied effects of azelnidipine on NO synthase (NOS) expression, NO production, cell death and apoptosis during H/R. Action potential durations (APDs) were determined by the whole-cell patch-clamp technique. Azelnidipine enhanced endothelial NOS phosphorylation and NO production in HL-1 cells under normoxia, which was abolished by a heat shock protein 90 inhibitor, geldanamycin, and an antioxidant, N-acetylcysteine. Pretreatment with azelnidipine reduced cell death and shortened APDs during H/R. These effects of azelnidipine were diminished by a NOS inhibitor, L-NAME, but were influenced by neither a T-type Ca2+ channel inhibitor, NiCl2, nor a N-type Ca2+ channel inhibitor, ω-conotoxin. The azelnidipine-induced reduction in cell death was not significantly enhanced by either additional azelnidipine treatment during H/R or increasing extracellular Ca2+ concentrations. RNA sequence (RNA-seq) data indicated that azelnidipine-induced attenuation of cell death, which depended on enhanced NO production, did not involve any significant modifications of gene expression responsible for the NO/cGMP/PKG pathway. We conclude that pretreatment with azelnidipine protects HL-1 cardiomyocytes against H/R injury via NO-dependent APD shortening and L-type Ca2+ channel blockade independently of effects on gene expression.

3.
Hypertens Res ; 46(10): 2368-2377, 2023 10.
Article in English | MEDLINE | ID: mdl-37592041

ABSTRACT

Soluble uric acid (UA) absorbed by cells through UA transporters (UATs) accumulates intracellularly, activates the NLRP3 inflammasome and thereby increases IL-1ß secretion. ABCG2 transporter excludes intracellular UA. However, it remains unknown whether ABCG2 inhibition leads to intracellular accumulation of UA and increases IL-1ß production. In this study, we examined whether genetic and pharmacological inhibition of ABCG2 could increase IL-1ß production in mouse macrophage-like J774.1 cells especially under hyperuricemic conditions. We determined mRNA and protein levels of pro-IL-1ß, mature IL-1ß, caspase-1 and several UATs in culture supernatants and lysates of J774.1 cells with or without soluble UA pretreatment. Knockdown experiments using an shRNA against ABCG2 and pharmacological experiments with an ABCG2 inhibitor were conducted. Extracellularly applied soluble UA increased protein levels of pro-IL-1ß, mature IL-1ß and caspase-1 in the culture supernatant from lipopolysaccharide (LPS)-primed and monosodium urate crystal (MSU)-stimulated J774.1 cells. J774.1 cells expressed UATs of ABCG2, GLUT9 and MRP4, and shRNA knockdown of ABCG2 increased protein levels of pro-IL-1ß and mature IL-1ß in the culture supernatant. Soluble UA increased mRNA and protein levels of ABCG2 in J774.1 cells without either LPS or MSU treatment. An ABCG2 inhibitor, febuxostat, but not a urate reabsorption inhibitor, dotinurad, enhanced IL-1ß production in cells pretreated with soluble UA. In conclusion, genetic and pharmacological inhibition of ABCG2 enhanced IL-1ß production especially under hyperuricemic conditions by increasing intracellularly accumulated soluble UA that activates the NLRP3 inflammasome and pro-IL-1ß transcription in macrophage-like J774.1 cells.


Subject(s)
Inflammasomes , Uric Acid , Mice , Animals , Uric Acid/pharmacology , Inflammasomes/metabolism , Inflammasomes/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/pharmacology , RNA, Small Interfering/pharmacology , RNA, Messenger/pharmacology , Caspases/pharmacology
4.
J Arrhythm ; 39(4): 664-668, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37560272

ABSTRACT

Background: Cardiomyocytes derived from human iPS cells (hiPSCs) include cells showing SAN- and non-SAN-type spontaneous APs. Objectives: To examine whether the deep learning technology could identify hiPSC-derived SAN-like cells showing SAN-type-APs by their shape. Methods: We acquired phase-contrast images for hiPSC-derived SHOX2/HCN4 double-positive SAN-like and non-SAN-like cells and made a VGG16-based CNN model to classify an input image as SAN-like or non-SAN-like cell, compared to human discriminability. Results: All parameter values such as accuracy, recall, specificity, and precision obtained from the trained CNN model were higher than those of human classification. Conclusions: Deep learning technology could identify hiPSC-derived SAN-like cells with considerable accuracy.

5.
Ann Plast Surg ; 90(2): 171-179, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36688861

ABSTRACT

ABSTRACT: Platelet-rich plasma (PRP) and adipose-derived stem cells (ADSCs) are known to secrete angiogenic factors that contribute to the treatment of intractable ulcers. The combination of PRP and ADSCs may enhance their angiogenic effects. However, it remains unclear whether treatment of ADSCs with PRP influences angiogenesis. We studied whether the conditioned medium from PRP-treated ADSCs under hypoxic conditions exerts angiogenic effects. Although PRP stimulated the proliferation of ADSCs obtained from rats, it decreased the mRNA levels of vascular endothelial growth factor, hepatocyte growth factor, and TGF-ß1, but not of basic fibroblast growth factor, under hypoxia. The conditioned medium of PRP-treated ADSCs inhibited endothelial nitric oxide synthase phosphorylation, decreased NO production, and suppressed tube formation in human umbilical vein endothelial cells. Transplantation of ADSCs alone increased both blood flow and capillary density of the ischemic limb; however, its combination with PRP did not further improve blood flow or capillary density. This suggests that both conditioned medium of ADSCs treated with PRP and combination of PRP with ADSCs transplantation may attenuate the phosphorylation of endothelial nitric oxide synthase and angiogenesis.


Subject(s)
Platelet-Rich Plasma , Vascular Endothelial Growth Factor A , Humans , Rats , Animals , Culture Media, Conditioned/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Nitric Oxide Synthase Type III , Human Umbilical Vein Endothelial Cells/metabolism , Neovascularization, Physiologic , Stem Cells/metabolism , Platelet-Rich Plasma/metabolism , Adipose Tissue/metabolism , Cells, Cultured
6.
Regen Ther ; 21: 239-249, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36092505

ABSTRACT

Introduction: Dysfunction of the sinoatrial node (SAN) cells causes arrhythmias, and many patients require artificial cardiac pacemaker implantation. However, the mechanism of impaired SAN automaticity remains unknown, and the generation of human SAN cells in vitro may provide a platform for understanding the pathogenesis of SAN dysfunction. The short stature homeobox 2 (SHOX2) and hyperpolarization-activated cyclic nucleotide-gated cation channel 4 (HCN4) genes are specifically expressed in SAN cells and are important for SAN development and automaticity. In this study, we aimed to purify and characterize human SAN-like cells in vitro, using HCN4 and SHOX2 as SAN markers. Methods: We developed an HCN4-EGFP/SHOX2-mCherry dual reporter cell line derived from human induced pluripotent stem cells (hiPSCs), and HCN4 and SHOX2 gene expressions were visualized using the fluorescent proteins EGFP and mCherry, respectively. The dual reporter cell line was established using an HCN4-EGFP bacterial artificial chromosome-based semi-knock-in system and a CRISPR-Cas9-dependent knock-in system with a SHOX2-mCherry targeting vector. Flow cytometry, RT-PCR, and whole-cell patch-clamp analyses were performed to identify SAN-like cells. Results: Flow cytometry analysis and cell sorting isolated HCN4-EGFP single-positive (HCN4+/SHOX2-) and HCN4-EGFP/SHOX2-mCherry double-positive (HCN4+/SHOX2+) cells. RT-PCR analyses showed that SAN-related genes were enriched within the HCN4+/SHOX2+ cells. Further, electrophysiological analyses showed that approximately 70% of the HCN4+/SHOX2+ cells exhibited SAN-like electrophysiological characteristics, as defined by the action potential parameters of the maximum upstroke velocity and action potential duration. Conclusions: The HCN4-EGFP/SHOX2-mCherry dual reporter hiPSC system developed in this study enabled the enrichment of SAN-like cells within a mixed HCN4+/SHOX2+ population of differentiating cardiac cells. This novel cell line is useful for the further enrichment of human SAN-like cells. It may contribute to regenerative medicine, for example, biological pacemakers, as well as testing for cardiotoxic and chronotropic actions of novel drug candidates.

7.
Mol Biol Rep ; 49(7): 5939-5952, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35368226

ABSTRACT

BACKGROUND: Gout is usually found in patients with atrial fibrillation (AF). K+ efflux is a common trigger of NLRP3 inflammasome activation which is involved in the pathogenesis of AF. We investigated the role of the K+ channel Kv1.5 in monosodium urate crystal (MSU)-induced activation of the NLRP3 inflammasome and electrical remodeling in mouse and human macrophages J774.1 and THP-1, and mouse atrial myocytes HL-1. METHODS AND RESULTS: Macrophages, primed with lipopolysaccharide (LPS), were stimulated by MSU. HL-1 cells were incubated with the conditioned medium (CM) from MSU-stimulated macrophages. Western blot, ELISA and patch clamp were used. MSU induced caspase-1 expression in LPS-primed J774.1 cells and IL-1ß secretion, suggesting NLRP3 inflammasome activation. A selective Kv1.5 inhibitor, diphenyl phosphine oxide-1 (DPO-1), and siRNAs against Kv1.5 suppressed the levels of caspase-1 and IL-1ß. MSU reduced intracellular K+ concentration which was prevented by DPO-1 and siRNAs against Kv1.5. MSU increased expression of Hsp70, and Kv1.5 on the plasma membrane. siRNAs against Hsp70 were suppressed but heat shock increased the expression of Hsp70, caspase-1, IL-1ß, and Kv1.5 in MSU-stimulated J774.1 cells. The CM from MSU-stimulated macrophages enhanced the expression of caspase-1, IL-1ß and Kv1.5 with increased Kv1.5-mediated currents that shortened action potential duration in HL-1 cells. These responses were abolished by DPO-1 and a siRNA against Kv1.5. CONCLUSIONS: Kv1.5 regulates MSU-induced activation of NLRP3 inflammasome in macrophages. MSUrelated activation of NLRP3 inflammasome and electrical remodeling in HL-1 cells are via macrophages. Kv1.5 may have therapeutic value for diseases related to gout-induced activation of the NLRP3 inflammsome, including AF.


Subject(s)
Atrial Remodeling , Gout , Kv1.5 Potassium Channel/metabolism , Animals , Caspase 1/metabolism , Gout/drug therapy , Gout/metabolism , Gout/pathology , Humans , Inflammasomes/metabolism , Interleukin-1beta/genetics , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Mice , Myocytes, Cardiac/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Uric Acid/metabolism , Uric Acid/pharmacology
8.
Clin Exp Nephrol ; 26(6): 522-529, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35212881

ABSTRACT

BACKGROUND: Familial juvenile hyperuricemic nephropathy (FJHN) is an autosomal dominant disorder caused by mutations in UMOD. Here we studied effects of genetic expression and pharmacological induction of Hsp70 on the UMOD mutants C112Y and C217G. METHODS: We expressed wild type (WT), C112Y and C217G in HEK293 cells and studied their maturation and cellular damage using western blot and flow cytometry. RESULTS: Expression of C112Y or C217G increased pro-apoptotic proteins, decreased anti-apoptotic proteins, and induced cellular apoptosis as examined by annexin V staining and flow cytometry. Overexpression of Hsp70 or administration of an Hsp70 inducer geranylgeranylacetone (GGA) promoted maturation of the mutant proteins, increased their secreted forms, normalized the levels of pro- and anti-apoptotic proteins and suppressed apoptosis. CONCLUSION: These findings indicated that Hsp70 enhanced maturation of C112Y and C217G and reduced cellular apoptosis, suggesting that Hsp70 induction might be of a therapeutic value for treatment of FJHN.


Subject(s)
Hyperuricemia , Apoptosis Regulatory Proteins/genetics , Gout , HEK293 Cells , Humans , Hyperuricemia/genetics , Kidney Diseases , Pedigree , Uromodulin/genetics
9.
Hypertens Res ; 45(2): 283-291, 2022 02.
Article in English | MEDLINE | ID: mdl-34853408

ABSTRACT

Cell-based therapy using adipose-derived stem cells (ADSCs) has emerged as a novel therapeutic approach to treat heart failure after myocardial infarction (MI). The purpose of this study was to determine whether inhibition of α1-adrenergic receptors (α1-ARs) in ADSCs attenuates ADSC sheet-induced improvements in cardiac functions and inhibition of remodeling after MI. ADSCs were isolated from fat tissues of Lewis rats. In in vitro studies using cultured ADSCs, we determined the mRNA levels of vascular endothelial growth factor (VEGF)-A and α1-AR under normoxia or hypoxia and the effects of norepinephrine and an α1-blocker, doxazosin, on the mRNA levels of angiogenic factors. Hypoxia increased α1-AR and VEGF mRNA levels in ADSCs. Norepinephrine further increased VEGF mRNA expression under hypoxia; this effect was abolished by doxazosin. Tube formation of human umbilical vein endothelial cells was promoted by conditioned media of ADSCs treated with the α1 stimulant phenylephrine under hypoxia but not by those of ADSCs pretreated with phenylephrine plus doxazosin. In in vivo studies using rats with MI, transplanted ADSC sheets improved cardiac functions, facilitated neovascularization, and suppressed fibrosis after MI. These effects were abolished by doxazosin treatment. Pathway analysis from RNA sequencing data predicted significant upregulation of α1-AR mRNA expression in transplanted ADSC sheets and the involvement of α1-ARs in angiogenesis through VEGF. In conclusion, doxazosin abolished the beneficial effects of ADSC sheets on rat MI hearts as well as the enhancing effect of norepinephrine on VEGF expression in ADSCs, indicating that ADSC sheets promote angiogenesis and prevent cardiac dysfunction and remodeling after MI via their α1-ARs.


Subject(s)
Heart Failure , Myocardial Infarction , Receptors, Adrenergic, alpha-1 , Animals , Human Umbilical Vein Endothelial Cells , Humans , Myocardial Infarction/complications , Neovascularization, Physiologic , Rats , Rats, Inbred Lew , Stem Cells , Vascular Endothelial Growth Factor A
10.
Circ J ; 85(5): 657-666, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33716265

ABSTRACT

BACKGROUND: Although adipose-derived stem cell (ADSC) sheets improve the cardiac function after myocardial infarction (MI), underlying mechanisms remain to be elucidated. The aim of this study was to determine the fate of transplanted ADSC sheets and candidate angiogenic factors released from ADSCs for their cardiac protective actions.Methods and Results:MI was induced by ligation of the left anterior descending coronary artery. Sheets of transgenic (Tg)-ADSCs expressing green fluorescence protein (GFP) and luciferase or wild-type (WT)-ADSCs were transplanted 1 week after MI. Both WT- and Tg-ADSC sheets improved cardiac functions evaluated by echocardiography at 3 and 5 weeks after MI. Histological examination at 5 weeks after MI demonstrated that either sheet suppressed fibrosis and increased vasculogenesis. Luciferase signals from Tg-ADSC sheets were detected at 1 and 2 weeks, but not at 4 weeks, after transplantation. RNA sequencing of PKH (yellow-orange fluorescent dye with long aliphatic tails)-labeled Tg-ADSCs identified mRNAs of 4 molecules related to angiogenesis, including those of Esm1 and Stc1 that increased under hypoxia. Administration of Esm1 or Stc1 promoted tube formation by human umbilical vein endothelial cells. CONCLUSIONS: ADSC sheets improved cardiac contractile functions after MI by suppressing cardiac fibrosis and enhancing neovascularization. Transplanted ADSCs existed for >2 weeks on MI hearts and produced the angiogenic factors Esm1 and Stc1, which may improve cardiac functions after MI.


Subject(s)
Adipose Tissue , Heart Failure , Myocardial Infarction , Angiogenesis Inducing Agents , Animals , Heart Failure/therapy , Human Umbilical Vein Endothelial Cells , Humans , Myocardial Infarction/therapy , Rats , Stem Cell Transplantation
11.
Hypertens Res ; 43(5): 380-388, 2020 05.
Article in English | MEDLINE | ID: mdl-31942044

ABSTRACT

Myocardial ischemia/reperfusion injury worsens in the absence of nitric oxide synthase (NOS). Cilnidipine, a Ca2+ channel blocker, has been reported to activate endothelial NOS (eNOS) and increases nitric oxide (NO) in vascular endothelial cells. We examined whether pretreatment with cilnidipine could attenuate cardiac cell deaths including apoptosis caused by hypoxia/reoxygenation (H/R) injury. HL-1 mouse atrial myocytes as well as H9c2 rat ventricular cells were exposed to H/R, and cell viability was evaluated by an autoanalyzer and flow cytometry; eNOS expression, NO production, and electrophysiological properties were also evaluated by western blotting, colorimetry, and patch clamping, respectively, in the absence and presence of cilnidipine. Cilnidipine enhanced phosphorylation of eNOS and NO production in a concentration-dependent manner, which was abolished by siRNAs against eNOS or an Hsp90 inhibitor, geldanamycin. Pretreatment with cilnidipine attenuated cell deaths including apoptosis during H/R; this effect was reproduced by an NO donor and a xanthine oxidase inhibitor. The NOS inhibitor L-NAME abolished the protective action of cilnidipine. Pretreatment with cilnidipine also attenuated H9c2 cell death during H/R. Additional cilnidipine treatment during H/R did not significantly enhance its protective action. There was no significant difference in the protective effect of cilnidipine under normal and high Ca2+ conditions. Action potential duration (APD) of HL-1 cells was shortened by cilnidipine, with this shortening augmented after H/R. L-NAME attenuated the APD shortening caused by cilnidipine. These findings indicate that cilnidipine enhances NO production, shortens APD in part by L-type Ca2+ channel block, and thereby prevents HL-1 cell deaths during H/R.


Subject(s)
Action Potentials/drug effects , Calcium Channel Blockers/pharmacology , Dihydropyridines/pharmacology , Hypoxia/metabolism , Myocytes, Cardiac/drug effects , Nitric Oxide/metabolism , Animals , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Gene Knockdown Techniques , Mice , Myocytes, Cardiac/metabolism , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Phosphorylation/drug effects , RNA, Small Interfering , Rats
12.
Circ Rep ; 2(8): 425-432, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-33693264

ABSTRACT

Background: Monocarboxylate transporter 9 (MCT9), an orphan transporter member of the solute carrier family 16 (SLC16), possibly reabsorbs uric acid in the renal tubule and has been suggested by genome-wide association studies to be involved in the development of hyperuricemia and gout. In this study we investigated the mechanisms regulating the expression of human (h) MCT9, its degradation, and physiological functions. Methods and Results: hMCT9-FLAG was stably expressed in HEK293 cells and its degradation, intracellular localization, and urate uptake activities were assessed by pulse-chase analysis, immunofluorescence, and [14C]-urate uptake experiments, respectively. hMCT9-FLAG was localized on the plasma membrane as well as in the endoplasmic reticulum and Golgi apparatus. The proteasome inhibitors MG132 and lactacystine increased levels of hMCT9-FLAG protein expression with enhanced ubiquitination, prolonged their half-life, and decreased [14C]-urate uptake. [14C]-urate uptake was increased by both heat shock (HS) and the HS protein inducer geranylgeranylacetone (GGA). Both HS and GGA restored the [14C]-urate uptake impaired by MG132. Conclusions: hMCT9 does transport urate and is degraded by a proteasome, inhibition of which reduces hMCT9 expression on the cell membrane and urate uptake. HS enhanced urate uptake through hMCT9.

13.
Circ J ; 83(11): 2282-2291, 2019 10 25.
Article in English | MEDLINE | ID: mdl-31527337

ABSTRACT

BACKGROUND: Treatment of myocardial infarction (MI) includes inhibition of the sympathetic nervous system (SNS). Cell-based therapy using adipose-derived stem cells (ASCs) has emerged as a novel therapeutic approach to treat heart failure in MI. The purpose of this study was to determine whether a combination of ASC transplantation and SNS inhibition synergistically improves cardiac functions after MI.Methods and Results:ASCs were isolated from fat tissues of Lewis rats. In in vitro studies using cultured ASC cells, mRNA levels of angiogenic factors under normoxia or hypoxia, and the effects of norepinephrine and a ß-blocker, carvedilol, on the mRNA levels were determined. Hypoxia increased vascular endothelial growth factor (VEGF) mRNA in ASCs. Norepinephrine further increased VEGF mRNA; this effect was unaffected by carvedilol. VEGF promoted VEGF receptor phosphorylation and tube formation of human umbilical vein endothelial cells, which were inhibited by carvedilol. In in vivo studies using a rat MI model, transplanted ASC sheets improved contractile functions of MI hearts; they also facilitated neovascularization and suppressed fibrosis after MI. These beneficial effects of ASC sheets were abolished by carvedilol. The effects of ASC sheets and carvedilol on MI heart functions were confirmed by Langendorff perfusion experiments using isolated hearts. CONCLUSIONS: ASC sheets prevented cardiac dysfunctions and remodeling after MI in a rat model via VEGF secretion. Inhibition of VEGF effects by carvedilol abolished their beneficial effects.


Subject(s)
Adrenergic beta-Antagonists/pharmacology , Carvedilol/pharmacology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/drug effects , Myocardial Contraction/drug effects , Myocardial Infarction/surgery , Subcutaneous Fat/cytology , Ventricular Function, Left/drug effects , Animals , Cell Hypoxia , Cells, Cultured , Disease Models, Animal , Fibrosis , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Male , Mesenchymal Stem Cells/metabolism , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Neovascularization, Physiologic/drug effects , Phosphorylation , Rats, Inbred Lew , Receptors, Vascular Endothelial Growth Factor/metabolism , Recovery of Function , Vascular Endothelial Growth Factor A/metabolism , Ventricular Remodeling/drug effects
14.
Biochem Biophys Rep ; 18: 100645, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31193220

ABSTRACT

In the present study, we have established a novel transgenic mouse and transgenic rats with dual reporters of EGFP and ELuc. In these transgenic (Tg) rodents, both GFP fluorescent and luciferase luminescent signals were ubiquitously detected in the heart, liver, kidney and testis, while only the GFP signal was detected in the brain. This expression system is based on a P2A linked EGFP/ELuc protein allowing both signals to be generated simultaneously. Microscopy experiments, FCM, and luciferase assays showed strong expression in freshly isolated ADSCs from Tg rodents upon transplantation of Tg rat-derived ADSCs into wild-type-mice. The ELuc transgene signal was observed and traced in vivo, and EGFP positive cells could be recovered from ELuc positive tissues in engraftment sites of wild-type mice for multiple analysis. These dual reporter Tg rodents are a useful reconstituted model system of regenerative medicine and are a valuable tool to study stem cells.

15.
Circ J ; 83(4): 718-726, 2019 03 25.
Article in English | MEDLINE | ID: mdl-30787218

ABSTRACT

BACKGROUND: Intracellular uric acid is known to increase the protein level and channel current of atrial Kv1.5; however, mechanisms of the uric acid-induced enhancement of Kv1.5 expression remain unclear. Methods and Results: The effects of uric acid on mRNA and protein levels of Kv1.5, as well as those of Akt, HSF1 and Hsp70, in HL-1 cardiomyocytes were studied by using qRT-PCR and Western blotting. The uptake of uric acid was measured using radio-labeled uric acid. The Kv1.5-mediated channel current was also measured by using patch clamp techniques. Uric acid up-taken by HL-1 cells significantly increased the level of Kv1.5 proteins in a concentration-dependent manner, with this increase abolished by an uric acid transporter inhibitor. Uric acid slowed degradation of Kv1.5 proteins without altering its mRNA level. Uric acid enhanced phosphorylation of Akt and HSF1, and thereby increased both transcription and translation of Hsp70; these effects were abolished by a PI3K inhibitor. Hsp70 knockdown abolished the uric acid-induced increases of Kv1.5 proteins and channel currents. CONCLUSIONS: Intracellular uric acid could stabilize Kv1.5 proteins through phosphorylation of Akt and HSF1 leading to enhanced expression of Hsp70.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , Heat Shock Transcription Factors/metabolism , Kv1.5 Potassium Channel/metabolism , Myocytes, Cardiac/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Uric Acid/pharmacology , Animals , Cell Line , Kv1.5 Potassium Channel/drug effects , Mice , Phosphorylation/drug effects , Protein Biosynthesis , Transcription, Genetic
16.
Regen Ther ; 10: 104-111, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30766898

ABSTRACT

INTRODUCTION: Human induced pluripotent stem cells (hiPSCs) harboring cardiac myosin heavy chain 6 promoter can differentiate into functional cardiomyocytes called "iCell cardiomyocytes" under blasticidin treatment condition. While iCell cardiomyocytes are expected to be used for predicting cardiotoxicity of drugs, their responses to antiarrhythmic agents remain to be elucidated. We first examined electrophysiological properties of iCell cardiomyocytes and mRNA levels of ion channels and Ca handling proteins, and then evaluated effects of class I antiarrhythmic agents on their Na+ and Ca2+ currents. METHODS: iCell cardiomyocytes were cultured for 8-14 days (38-44 days after inducing their differentiation), according to the manufacturer's protocol. We determined their action potentials (APs) and sarcolemmal ionic currents using whole-cell patch clamp techniques, and also mRNA levels of ion channels and Ca handling proteins by RT-PCR. Effects of three class I antiarrhythmic agents, pirmenol, pilsicainide and mexiletine, on Na+ channel current (INa) and L-type Ca2+ channel current (ICaL) were evaluated by the whole-cell patch clamp. RESULTS: iCell cardiomyocytes revealed sinoatrial node-type (18%), atrial-type (18%) and ventricular-type (64%) spontaneous APs. The maximum peak amplitudes of INa, ICaL, and rapidly-activating delayed-rectifier K+ channel current were -62.7 ± 13.7, -8.1 ± 0.7, and 3.0 ± 1.0 pA/pF, respectively. The hyperpolarization-activated cation channel and inward-rectifier K+ channel currents were observed, whereas the T-type Ca2+ channel or slowly-activating delayed-rectifier K+ channel current was not detectable. mRNAs of Nav1.5, Cav1.2, Kir2.1, HCN4, KvLQT1, hERG and SERCA2 were detected, while that of HCN1, minK or MiRP was not. The class Ia antiarrhythmic agent pirmenol and class Ic agent pilsicainide blocked INa in a concentration-dependent manner with IC50 of 0.87 ± 0.37 and 0.88 ± 0.16 µM, respectively; the class Ib agent mexiletine revealed weak INa block with a higher IC50 of 30.0 ± 3.0 µM. Pirmenol, pilsicainide and mexiletine blocked ICaL with IC50 of 2.00 ± 0.39, 7.7 ± 2.5 and 5.0 ± 0.1 µM, respectively. CONCLUSIONS: In iCell cardiomyocytes, INa was blocked by the class Ia and Ic antiarrhythmic agents and ICaL was blocked by all the class I agents within the ranges of clinical concentrations, suggesting their cardiotoxicity.

17.
Regen Ther ; 9: 79-88, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30525078

ABSTRACT

INTRODUCTION: Cell sheets using myoblasts have been developed for the treatment of heart failure after myocardial infarction (MI) bridging to heart transplantation. Stem cells are supposed to be better than myoblasts as a source of cells, since they possess a potential to proliferate and differentiate into cardiomyocytes, and also have capacity to secrete angiogenic factors. Adipose-derived stem cells (ASCs) obtained from fat tissues are expected to be a new cell source for ASC sheet therapies. Administration of angiotensin II receptor blockers (ARBs) is a standard therapy for heart failure after MI. However, it is not known whether ARBs affect the cell sheet therapy. This study aimed to examine ameliorating effects of ASC sheets on heart failure and remodeling after MI, and how pretreatment with ARBs prior to the creation of MI and ASC sheet transplantation modifies the effects of ASC sheets. METHODS: ASCs were isolated from fat tissues of wild-type rats, and ASC sheets were engineered on temperature-responsive dishes. In in vitro studies using cultured cells, mRNA levels of vascular endothelial growth factor (VEGF) in ASCs were determined by RT-PCR in the presence of angiotensin II and/or an ARB, irbesartan, under normoxia and hypoxia; mRNA and protein levels of angiotensin II receptor type 1a (AT1aR), type 1b (AT1bR) and type 2 (AT2R) were also determined by RT-PCR and western blotting. In in vivo studies using a rat MI model, effects of transplanted ASC sheets and/or irbesartan on cardiac functions and remodeling after MI were evaluated by echocardiography, histological analysis and molecular biological techniques. RESULTS: In the in vitro studies, ASCs expressed higher levels of VEGF mRNA under hypoxia. They also expressed mRNA and protein of AT1aR but not AT1bR or AT2R. Under normoxia, angiotensin II increased the level of VEGF mRNA in ASCs, which was abolished by irbesartan. Under hypoxia, irbesartan reduced the level of VEGF mRNA in ASCs regardless of whether angiotensin II was present or not. In the in vivo studies, ASC sheets improved cardiac functions after MI, leading to decreased interstitial fibrosis and increased capillary density in border zones. These effects of ASC sheets were abolished by oral administration of irbesartan before MI and their transplantation. CONCLUSIONS: ASC sheets ameliorated cardiac dysfunctions and remodeling after MI via increasing VEGF expression, which was abolished by pretreatment with irbesartan before the creation of MI and transplantation.

18.
Circ J ; 82(4): 1101-1111, 2018 03 23.
Article in English | MEDLINE | ID: mdl-29491325

ABSTRACT

BACKGROUND: Ischemia/reperfusion (I/R) injury triggers cardiac dysfunctions via creating reactive oxygen species (ROS). Because xanthine oxidase (XO) is one of the major enzymes that generate ROS, inhibition of XO is expected to suppress ROS-induced I/R injury. However, it remains unclear whether XO inhibition really yields cardioprotection during I/R. The protective effects of the XO inhibitors, topiroxostat and allopurinol, on cardiac I/R injury were evaluated.Methods and Results:Using isolated rat hearts, ventricular functions, occurrence of arrhythmias, XO activities and thiobarbituric acid reactive substances (TBARS) productions and myocardial levels of adenine nucleotides before and after I/R, and cardiomyocyte death markers during reperfusion, were evaluated. Topiroxostat prevented left ventricular dysfunctions and facilitated recovery from arrhythmias during I/R. Allopurinol and the antioxidant, N-acetylcysteine (NAC), exhibited similar effects at higher concentrations. Topiroxostat inhibited myocardial XO activities and TBARS productions after I/R. I/R decreased myocardial levels of ATP, ADP and AMP, but increased that of xanthine. While topiroxostat, allopurinol or NAC did not change myocardial levels of ATP, ADP or AMP after I/R, all of the agents decreased the level of xanthine. They also decreased releases of CPK and LDH during reperfusion. CONCLUSIONS: Topiroxostat showed protective effects against I/R injury with higher potency than allopurinol or NAC. It dramatically inhibited XO activity and TBARS production, suggesting suppression of ROS generation.


Subject(s)
Myocardial Reperfusion Injury/drug therapy , Nitriles/therapeutic use , Pyridines/therapeutic use , Allopurinol/pharmacology , Allopurinol/therapeutic use , Animals , Arrhythmias, Cardiac/drug therapy , Nitriles/pharmacology , Protective Agents/pharmacology , Protective Agents/therapeutic use , Pyridines/pharmacology , Rats , Reactive Oxygen Species/metabolism , Thiobarbituric Acid Reactive Substances/metabolism , Ventricular Dysfunction, Left/prevention & control , Xanthine Dehydrogenase/antagonists & inhibitors
19.
J Mol Cell Cardiol ; 115: 158-169, 2018 02.
Article in English | MEDLINE | ID: mdl-29355491

ABSTRACT

The human ether-a-go-go-related gene (hERG) encodes the α subunit of a rapidly activating delayed-rectifier potassium (IKr) channel. Mutations of the hERG cause long QT syndrome type 2 (LQT2). Acetylation of lysine residues occurs in a subset of non-histone proteins and this modification is controlled by both histone acetyltransferases and deacetylases (HDACs). The aim of this study was to clarify effects of HDAC(s) on wild-type (WT) and mutant hERG proteins. WThERG and two trafficking-defective mutants (G601S and R752W) were transiently expressed in HEK293 cells, which were treated with a pan-HDAC inhibitor Trichostatin A (TSA) or an isoform-selective HDAC6 inhibitor Tubastatin A (TBA). Both TSA and TBA increased protein levels of WThERG and induced expression of mature forms of the two mutants. Immunoprecipitation showed an interaction between HDAC6 and immature forms of hERG. Coexpression of HDAC6 decreased acetylation and, reciprocally, increased ubiquitination of hERG, resulting in its decreased expression. siRNA against HDAC6, as well as TBA, exerted opposite effects. Immunochemistry revealed that HDAC6 knockdown increased expression of the WThERG and two mutants both in the endoplasmic reticulum and on the cell surface. Electrophysiology showed that HDAC6 knockdown or TBA treatment increased the hERG channel current corresponding to the rapidly activating delayed-rectifier potassium current (IKr) in HEK293 cells stably expressing the WT or mutants. Three lysine residues (K116, K495 and K757) of hERG were predicted to be acetylated. Substitution of these lysine residues with arginine eliminated HDAC6 effects. In HL-1 mouse cardiomyocytes, TBA enhanced endogenous ERG expression, increased IKr, and shortened action potential duration. These results indicate that hERG is a substrate of HDAC6. HDAC6 inhibition induced acetylation of hERG which counteracted ubiquitination leading its stabilization. HDAC6 inhibition may be a novel therapeutic option for LQT2.


Subject(s)
ERG1 Potassium Channel/metabolism , Histone Deacetylase 6/metabolism , Mutant Proteins/metabolism , Acetylation/drug effects , Animals , ERG1 Potassium Channel/chemistry , HEK293 Cells , Histone Deacetylase Inhibitors/pharmacology , Humans , Lysine/metabolism , Mice , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Protein Processing, Post-Translational/drug effects , Protein Transport/drug effects , Proteolysis/drug effects , Ubiquitination/drug effects
20.
Biochem Biophys Res Commun ; 495(1): 1278-1284, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29175323

ABSTRACT

Human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs) are a promising source for cell transplantation into the damaged heart, which has limited regenerative ability. Many methods have been developed to obtain large amounts of functional CMs from hPSCs for therapeutic applications. However, during the differentiation process, a mixed population of various cardiac cells, including ventricular, atrial, and pacemaker cells, is generated, which hampers the proper functional analysis and evaluation of cell properties. Here, we established NKX2-5eGFP/w and MLC2vmCherry/w hPSC double knock-ins that allow for labeling, tracing, purification, and analysis of the development of ventricular cells from early to late stages. As with the endogenous transcriptional activities of these genes, MLC2v-mCherry expression following NKX2-5-eGFP expression was observed under previously established culture conditions, which mimic the in vivo cardiac developmental process. Patch-clamp and microelectrode array electrophysiological analyses showed that the NKX2-5 and MLC2v double-positive cells possess ventricular-like properties. The results demonstrate that the NKX2-5eGFP/w and MLC2vmCherry/w hPSCs provide a powerful model system to capture region-specific cardiac differentiation from early to late stages. Our study would facilitate subtype-specific cardiac development and functional analysis using the hPSC-derived sources.


Subject(s)
Batch Cell Culture Techniques/methods , Cardiac Myosins/metabolism , Cell Tracking/methods , Heart Ventricles/cytology , Homeobox Protein Nkx-2.5/metabolism , Myocytes, Cardiac/cytology , Myosin Light Chains/metabolism , Pluripotent Stem Cells/cytology , Cardiac Myosins/genetics , Cell Differentiation/physiology , Cell Separation/methods , Cells, Cultured , Gene Knock-In Techniques , Genes, Reporter/genetics , Heart Ventricles/metabolism , Homeobox Protein Nkx-2.5/genetics , Humans , Myocytes, Cardiac/metabolism , Myosin Light Chains/genetics , Pluripotent Stem Cells/metabolism , Tissue Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...