Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Numer Method Biomed Eng ; 38(11): e3646, 2022 11.
Article in English | MEDLINE | ID: mdl-36054682

ABSTRACT

About a third of knee joint disorders originate from the patellofemoral (PF) site that makes stair ascent a difficult activity for patients. A detailed finite element model of the knee joint is coupled to a lower extremity musculoskeletal model to simulate the stance phase of stair ascent. It is driven by the mean of measurements on the hip-knee-ankle moments-angles as well as ground reaction forces reported in healthy individuals. Predicted muscle activities compare well to the recorded electromyography data. Peak forces in quadriceps (3.87 BW, body weight, at 20% instance in our 607 N subject), medial hamstrings (0.77 BW at 20%), and gastrocnemii (1.21 BW at 80%) are estimated. Due to much greater flexion angles-moments in the first half of stance, large PF contact forces (peak of 3.1 BW at 20% stance) and stresses (peak of 4.83 MPa at 20% stance) are estimated that exceed their peaks in level walking by fourfold and twofold, respectively. Compared with level walking, ACL forces diminish in the first half of stance but substantially increase later in the second half (peak of 0.76 BW at 75% stance). Under nearly similar contact forces at 20% of stance, the contact stress on the tibiofemoral (TF) medial plateau reaches a peak (9.68 MPa) twice that on the PF joint suggesting the vulnerability of both joints. Compared with walking, stair ascent increases peak ACL force and both peak TF and PF contact stresses. Reductions in the knee flexion moment and/or angle appear as a viable strategy to mitigate internal loads and pain.


Subject(s)
Knee Joint , Walking , Humans , Biomechanical Phenomena , Knee Joint/physiology , Walking/physiology , Muscle, Skeletal/physiology , Ligaments , Gait/physiology
3.
J Bone Joint Surg Am ; 88 Suppl 2: 30-5, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16595440

ABSTRACT

The metabolic environment of disc cells is governed by the avascular nature of the tissue. Because cellular energy metabolism occurs mainly through glycolysis, the disc cells require glucose for survival and produce lactic acid at high rates. Oxygen is also necessary for cellular activity, although not for survival; its pathway of utilization is unclear. Because the tissues are avascular, disc cells depend on the blood supply at the margins of the discs for their nutrients. The nucleus and inner anulus of the disc are supplied by capillaries that arise in the vertebral bodies, penetrate the subchondral bone, and terminate at the bone-disc junction. Small molecules such as glucose and oxygen then reach the cells by diffusion under gradients established by the balance between the rate of transport through the tissue to the cells and the rate of cellular demand. Metabolites such as lactic acid are removed by the reverse pathway. The concentrations of nutrients farthest from the source of supply can thus be low; oxygen concentrations as low as 1% have been measured in the discs of healthy animals. Although gradients cannot be measured easily in humans, they can be calculated. Measured concentrations in surgical patients are in agreement with calculated values.


Subject(s)
Energy Metabolism/physiology , Glucose/metabolism , Intervertebral Disc/cytology , Intervertebral Disc/metabolism , Biological Transport/physiology , Cells, Cultured , Humans , Oxygen/metabolism , Regeneration/physiology , Sensitivity and Specificity , Spinal Diseases/etiology , Spinal Diseases/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...