Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
J Control Release ; 334: 335-352, 2021 06 10.
Article in English | MEDLINE | ID: mdl-33933518

ABSTRACT

Phosphatase and TENsin homolog deleted on chromosome 10 (PTEN) is a major tumor-suppressor protein that is lost in up to 75% of aggressive colorectal cancers (CRC). The co-depletion of PTEN and a DNA repair protein, polynucleotide kinase 3'-phosphatase (PNKP), has been shown to lead to synthetic lethality in several cancer types including CRC. This finding inspired the development of novel PNKP inhibitors as potential new drugs against PTEN-deficient CRC. Here, we report on the in vitro and in vivo evaluation of a nano-encapsulated potent, but poorly water-soluble lead PNKP inhibitor, A83B4C63, as a new targeted therapeutic for PTEN-deficient CRC. Our data confirmed the binding of A83B4C63, as free or nanoparticle (NP) formulation, to intracellular PNKP using the cellular thermal shift assay (CETSA), in vitro and in vivo. Dose escalating toxicity studies in healthy CD-1 mice, based on measurement of animal weight changes and biochemical blood analysis, revealed the safety of both free and nano-encapsulated A83B4C63, at assessed doses of ≤50 mg/kg. Nano-carriers of A83B4C63 effectively inhibited the growth of HCT116/PTEN-/- xenografts in NIH-III nude mice following intravenous (IV) administration, but not that of wild-type HCT116/PTEN+/+ xenografts. This was in contrast to IV administration of A83B4C63 solubilized with the aid of Cremophor EL: Ethanol (CE), which led to similar tumor growth to that of formulation excipients (NP or CE without drug) or 5% dextrose. This observation was attributed to the higher levels of A83B4C63 delivered to tumor tissue by its NP formulation. Our data provide evidence for the success of NPs of A83B4C63, as novel synthetically lethal nano-therapeutics in the treatment of PTEN-deficient CRC. This research also highlights the potential of successful application of nanomedicine in the drug development process.


Subject(s)
Colorectal Neoplasms , Polynucleotide 5'-Hydroxyl-Kinase , Animals , Colorectal Neoplasms/drug therapy , Mice , Mice, Nude , Nanomedicine , PTEN Phosphohydrolase/deficiency , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors
3.
Cell Rep Med ; 2(12): 100471, 2021 12 21.
Article in English | MEDLINE | ID: mdl-35028612

ABSTRACT

Resistance to platinum compounds is a major determinant of patient survival in high-grade serous ovarian cancer (HGSOC). To understand mechanisms of platinum resistance and identify potential therapeutic targets in resistant HGSOC, we generated a data resource composed of dynamic (±carboplatin) protein, post-translational modification, and RNA sequencing (RNA-seq) profiles from intra-patient cell line pairs derived from 3 HGSOC patients before and after acquiring platinum resistance. These profiles reveal extensive responses to carboplatin that differ between sensitive and resistant cells. Higher fatty acid oxidation (FAO) pathway expression is associated with platinum resistance, and both pharmacologic inhibition and CRISPR knockout of carnitine palmitoyltransferase 1A (CPT1A), which represents a rate limiting step of FAO, sensitize HGSOC cells to platinum. The results are further validated in patient-derived xenograft models, indicating that CPT1A is a candidate therapeutic target to overcome platinum resistance. All multiomic data can be queried via an intuitive gene-query user interface (https://sites.google.com/view/ptrc-cell-line).


Subject(s)
Carboplatin/therapeutic use , Carnitine O-Palmitoyltransferase/metabolism , Cystadenocarcinoma, Serous/metabolism , Cystadenocarcinoma, Serous/pathology , Genomics , Molecular Targeted Therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Animals , Apoptosis/drug effects , Carboplatin/pharmacology , Carnitine O-Palmitoyltransferase/antagonists & inhibitors , Carnitine O-Palmitoyltransferase/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cystadenocarcinoma, Serous/drug therapy , DNA Damage , Drug Resistance, Neoplasm/drug effects , Fatty Acids/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice, SCID , Neoplasm Grading , Ovarian Neoplasms/drug therapy , Oxidation-Reduction/drug effects , Oxidative Phosphorylation/drug effects , Phosphoproteins/metabolism , Proteomics , Reactive Oxygen Species/metabolism
4.
Mol Pharm ; 15(6): 2316-2326, 2018 06 04.
Article in English | MEDLINE | ID: mdl-29688721

ABSTRACT

There is increasing interest in developing and applying DNA repair inhibitors in cancer treatment to augment the efficacy of radiation and conventional genotoxic chemotherapy. However, targeting the inhibitor is required to avoid reducing the repair capacity of normal tissue. The aim of this study was to develop nanodelivery systems for the encapsulation of novel imidopiperidine-based inhibitors of the DNA 3'-phosphatase activity of polynucleotide kinase/phosphatase (PNKP), a DNA repair enzyme that plays a critical role in rejoining DNA single- and double-strand breaks. For this purpose, newly identified hit compounds with potent PNKP inhibitory activity, imidopiperidines A12B4C50 and A83B4C63 were encapsulated in polymeric micelles of different poly(ethylene oxide)- b-poly(ε-caprolactone) (PEO- b-PCL)-based structures. Our results showed efficient loading of A12B4C50 and A83B4C63 in PEO- b-PCLs with pendent carboxyl and benzyl carboxylate groups, respectively, and relatively slow release over 24 h. Both free and encapsulated inhibitors were able to sensitize HCT116 cells to radiation and the topoisomerase I poison, irinotecan. In addition, the encapsulated inhibitors were capable of inducing synthetic lethalilty in phosphatase and tensin homologue (PTEN)-deficient cells. We also established the validity of the peptide GE11 as a suitable ligand for active targeted delivery of nanoencapsulated drugs to colorectal cancer cells overexpressing epidermal growth factor receptor (EGFR). Our results show the potential of nanoencapsulated inhibitors of PNKP as either mono or combined therapeutic agents for colorectal cancer.


Subject(s)
Colorectal Neoplasms/therapy , DNA Repair Enzymes/antagonists & inhibitors , Nanocapsules/chemistry , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Piperidines/administration & dosage , Synthetic Lethal Mutations/drug effects , Chemoradiotherapy/methods , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , DNA Repair/drug effects , DNA Repair/radiation effects , DNA Repair Enzymes/metabolism , Drug Compounding/methods , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , HCT116 Cells , Humans , Irinotecan/pharmacology , Micelles , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Piperidines/pharmacology , Radiation, Ionizing
5.
Anal Bioanal Chem ; 403(1): 179-84, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22349333

ABSTRACT

Cisplatin (cis-diamminedichloroplatinum(II)) causes crosslinking of DNA at AG and GG sites in cellular DNA, inhibiting replication, and making it a useful anti-cancer drug. Several techniques have been used previously to detect nucleic acid damage but most of these tools are labour-intensive, time-consuming, and/or expensive. Here, we describe a sensitive, robust, and quantitative tool for detecting cisplatin-induced DNA damage by using fluorescent molecular beacon probes (MB). Our results show a decrease of fluorescence in the presence of cisplatin-induced DNA damage, confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The decrease in fluorescence upon damage scales with the number of AG and GG sites, indicating the ability of MB to quantitatively detect DNA damage by cisplatin.


Subject(s)
Antineoplastic Agents/toxicity , Cisplatin/toxicity , DNA Damage , Molecular Probes , Fluorescence , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
6.
Photochem Photobiol ; 88(3): 645-50, 2012.
Article in English | MEDLINE | ID: mdl-22329786

ABSTRACT

Ultraviolet A (UVA)-irradiated 4'-hydroxymethyl-4,5',8-trimethyl psoralen (HMT) in the presence of a poly-dT(17) and dA(7) TTA(8) oligonucleotides produces HMT-dT(17) and HMT-dA(7) TTA(8) adducts in aqueous solution. In this article, we determine whether these HMT-dT(17) and HMT-dA(7) TTA(8) adducts can be detected with a molecular beacon (MB) probe. We measure the degree of damage in dT(17) and dA(7) TTA(8) solutions containing UVA-activated HMT via monitoring the decrease in MB fluorescence. Photoproduct formation is confirmed by MALDI-TOF MS (matrix-assisted laser desorption/ionization time-of-fight mass spectrometry measurements) and absorption spectroscopy. The MB fluorescence decreases upon UVA irradiation in the presence of HMT with a single-exponential time constants of 114.2 ± 6.5 min for HMT-dT(17) adducts and 677.8 ± 181.8 min for HMT-dA(7) TTA(8) adducts. Our results show that fluorescent MB probes are a selective, robust and accurate tool for detecting UVA-activated HMT-induced DNA damage.


Subject(s)
Furocoumarins/chemistry , Oligonucleotide Probes , Photochemical Processes , DNA Adducts , Fluorescence , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...