Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nature ; 623(7988): 752-756, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37853128

ABSTRACT

Subduction related to the ancient supercontinent cycle is poorly constrained by mantle samples. Sublithospheric diamond crystallization records the release of melts from subducting oceanic lithosphere at 300-700 km depths1,2 and is especially suited to tracking the timing and effects of deep mantle processes on supercontinents. Here we show that four isotope systems (Rb-Sr, Sm-Nd, U-Pb and Re-Os) applied to Fe-sulfide and CaSiO3 inclusions within 13 sublithospheric diamonds from Juína (Brazil) and Kankan (Guinea) give broadly overlapping crystallization ages from around 450 to 650 million years ago. The intracratonic location of the diamond deposits on Gondwana and the ages, initial isotopic ratios, and trace element content of the inclusions indicate formation from a peri-Gondwanan subduction system. Preservation of these Neoproterozoic-Palaeozoic sublithospheric diamonds beneath Gondwana until its Cretaceous breakup, coupled with majorite geobarometry3,4, suggests that they accreted to and were retained in the lithospheric keel for more than 300 Myr during supercontinent migration. We propose that this process of lithosphere growth-with diamonds attached to the supercontinent keel by the diapiric uprise of depleted buoyant material and pieces of slab crust-could have enhanced supercontinent stability.

2.
Science ; 376(6593): eabo0882, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35536897

ABSTRACT

Tschauner et al. (Reports, 11 November 2021, p. 891) present evidence that diamond GRR-1507 formed in the lower mantle. Instead, the data support a much shallower origin in cold, subcratonic lithospheric mantle. X-ray diffraction data are well matched to phases common in microinclusion-bearing lithospheric diamonds. The calculated bulk inclusion composition is too imprecise to uniquely confirm CaSiO3 stoichiometry and is equally consistent with inclusions observed in other lithospheric diamonds.

3.
Sci Adv ; 7(14)2021 Mar.
Article in English | MEDLINE | ID: mdl-33789901

ABSTRACT

Subducting tectonic plates carry water and other surficial components into Earth's interior. Previous studies suggest that serpentinized peridotite is a key part of deep recycling, but this geochemical pathway has not been directly traced. Here, we report Fe-Ni-rich metallic inclusions in sublithospheric diamonds from a depth of 360 to 750 km with isotopically heavy iron (δ56Fe = 0.79 to 0.90‰) and unradiogenic osmium (187Os/188Os = 0.111). These iron values lie outside the range of known mantle compositions or expected reaction products at depth. This signature represents subducted iron from magnetite and/or Fe-Ni alloys precipitated during serpentinization of oceanic peridotite, a lithology known to carry unradiogenic osmium inherited from prior convection and melt depletion. These diamond-hosted inclusions trace serpentinite subduction into the mantle transition zone. We propose that iron-rich phases from serpentinite contribute a labile heavy iron component to the heterogeneous convecting mantle eventually sampled by oceanic basalts.

4.
J Synchrotron Radiat ; 26(Pt 5): 1763-1768, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31490168

ABSTRACT

Mineral inclusions in natural diamond are widely studied for the insight that they provide into the geochemistry and dynamics of the Earth's interior. A major challenge in achieving thorough yet high rates of analysis of mineral inclusions in diamond derives from the micrometre-scale of most inclusions, often requiring synchrotron radiation sources for diffraction. Centering microinclusions for diffraction with a highly focused synchrotron beam cannot be achieved optically because of the very high index of refraction of diamond. A fast, high-throughput method for identification of micromineral inclusions in diamond has been developed at the GeoSoilEnviro Center for Advanced Radiation Sources (GSECARS), Advanced Photon Source, Argonne National Laboratory, USA. Diamonds and their inclusions are imaged using synchrotron 3D computed X-ray microtomography on beamline 13-BM-D of GSECARS. The location of every inclusion is then pinpointed onto the coordinate system of the six-circle goniometer of the single-crystal diffractometer on beamline 13-BM-C. Because the bending magnet branch 13-BM is divided and delivered into 13-BM-C and 13-BM-D stations simultaneously, numerous diamonds can be examined during coordinated runs. The fast, high-throughput capability of the methodology is demonstrated by collecting 3D diffraction data on 53 diamond inclusions from Juína, Brazil, within a total of about 72 h of beam time.


Subject(s)
Diamond/chemistry , Synchrotrons , X-Ray Microtomography/methods , Equipment Design , Photons , X-Ray Diffraction
6.
Science ; 364(6438): 383-385, 2019 04 26.
Article in English | MEDLINE | ID: mdl-31023922

ABSTRACT

Neoproterozoic West African diamonds contain sulfide inclusions with mass-independently fractionated (MIF) sulfur isotopes that trace Archean surficial signatures into the mantle. Two episodes of subduction are recorded in these West African sulfide inclusions: thickening of the continental lithosphere through horizontal processes around 3 billion years ago and reworking and diamond growth around 650 million years ago. We find that the sulfur isotope record in worldwide diamond inclusions is consistent with changes in tectonic processes that formed the continental lithosphere in the Archean. Slave craton diamonds that formed 3.5 billion years ago do not contain any MIF sulfur. Younger diamonds from the Kaapvaal, Zimbabwe, and West African cratons do contain MIF sulfur, which suggests craton construction by advective thickening of mantle lithosphere through conventional subduction-style horizontal tectonics.

7.
Nature ; 560(7716): 84-87, 2018 08.
Article in English | MEDLINE | ID: mdl-30068951

ABSTRACT

Geological pathways for the recycling of Earth's surface materials into the mantle are both driven and obscured by plate tectonics1-3. Gauging the extent of this recycling is difficult because subducted crustal components are often released at relatively shallow depths, below arc volcanoes4-7. The conspicuous existence of blue boron-bearing diamonds (type IIb)8,9 reveals that boron, an element abundant in the continental and oceanic crust, is present in certain diamond-forming fluids at mantle depths. However, both the provenance of the boron and the geological setting of diamond crystallization were unknown. Here we show that boron-bearing diamonds carry previously unrecognized mineral assemblages whose high-pressure precursors were stable in metamorphosed oceanic lithospheric slabs at depths reaching the lower mantle. We propose that some of the boron in seawater-serpentinized oceanic lithosphere is subducted into the deep mantle, where it is released with hydrous fluids that enable diamond growth10. Type IIb diamonds are thus among the deepest diamonds ever found and indicate a viable pathway for the deep-mantle recycling of crustal elements.

8.
Science ; 354(6318): 1403-1405, 2016 Dec 16.
Article in English | MEDLINE | ID: mdl-27980206

ABSTRACT

The redox state of Earth's convecting mantle, masked by the lithospheric plates and basaltic magmatism of plate tectonics, is a key unknown in the evolutionary history of our planet. Here we report that large, exceptional gem diamonds like the Cullinan, Constellation, and Koh-i-Noor carry direct evidence of crystallization from a redox-sensitive metallic liquid phase in the deep mantle. These sublithospheric diamonds contain inclusions of solidified iron-nickel-carbon-sulfur melt, accompanied by a thin fluid layer of methane ± hydrogen, and sometimes majoritic garnet or former calcium silicate perovskite. The metal-dominated mineral assemblages and reduced volatiles in large gem diamonds indicate formation under metal-saturated conditions. We verify previous predictions that Earth has highly reducing deep mantle regions capable of precipitating a metallic iron phase that contains dissolved carbon and hydrogen.

9.
Science ; 333(6041): 434-6, 2011 Jul 22.
Article in English | MEDLINE | ID: mdl-21778395

ABSTRACT

Mineral inclusions encapsulated in diamonds are the oldest, deepest, and most pristine samples of Earth's mantle. They provide age and chemical information over a period of 3.5 billion years--a span that includes continental crustal growth, atmospheric evolution, and the initiation of plate tectonics. We compiled isotopic and bulk chemical data of silicate and sulfide inclusions and found that a compositional change occurred 3.0 billion years ago (Ga). Before 3.2 Ga, only diamonds with peridotitic compositions formed, whereas after 3.0 Ga, eclogitic diamonds became prevalent. We suggest that this resulted from the capture of eclogite and diamond-forming fluids in subcontinental mantle via subduction and continental collision, marking the onset of the Wilson cycle of plate tectonics.


Subject(s)
Diamond/chemistry , Evolution, Planetary , Geologic Sediments/chemistry , Geological Phenomena , Minerals/analysis , Silicates/analysis , Sulfides/analysis , Time
10.
Nature ; 453(7197): 910-3, 2008 Jun 12.
Article in English | MEDLINE | ID: mdl-18548068

ABSTRACT

The emplacement of the 2.05-billion-year-old Bushveld complex, the world's largest layered intrusion and platinum-group element (PGE) repository, is a singular event in the history of the Kaapvaal craton of southern Africa, one of Earth's earliest surviving continental nuclei. In the prevailing model for the complex's mineralization, the radiogenic strontium and osmium isotope signatures of Bushveld PGE ores are attributed to continental crustal contamination of the host magmas. The scale of the intrusion and lateral homogeneity of the PGE-enriched layers, however, have long been problematical for the crustal contamination model, given the typically heterogeneous nature of continental crust. Furthermore, the distribution of Bushveld magmatism matches that of seismically anomalous underlying mantle, implying significant interaction before emplacement in the crust. Mineral samples of the ancient 200-km-deep craton keel, encapsulated in macrodiamonds and entrained by proximal kimberlites, reveal the nature of continental mantle potentially incorporated by Bushveld magmas. Here we show that sulphide inclusions in approximately 2-billion-year-old diamonds from the 0.5-billion-year-old Venetia and 1.2-billion-year-old Premier kimberlites (on opposite sides of the complex) have initial osmium isotope ratios even more radiogenic than those of Bushveld sulphide ore minerals. Sulphide Re-Os and silicate Sm-Nd and Rb-Sr isotope compositions indicate that continental mantle harzburgite and eclogite components, in addition to the original convecting mantle magma, most probably contributed to the genesis of both the diamonds and the Bushveld complex. Coeval diamonds provide key evidence that the main source of Bushveld PGEs is the mantle rather than the crust.

11.
Science ; 297(5587): 1683-6, 2002 Sep 06.
Article in English | MEDLINE | ID: mdl-12215642

ABSTRACT

The lithospheric mantle beneath the Kaapvaal-Zimbabwe craton of southern Africa shows variations in seismic P-wave velocity at depths within the diamond stability field that correlate with differences in the composition of diamonds and their syngenetic inclusions. Middle Archean mantle depletion events initiated craton keel formation and early harzburgitic diamond formation. Late Archean accretionary events involving an oceanic lithosphere component stabilized the craton and contributed a younger Archean generation of eclogitic diamonds. Subsequent Proterozoic tectonic and magmatic events altered the composition of the continental lithosphere and added new lherzolitic and eclogitic diamonds to the Archean diamond suite.

SELECTION OF CITATIONS
SEARCH DETAIL
...