Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Chem Toxicol ; : 1-10, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38058159

ABSTRACT

Aflatoxins, a group of toxic secondary metabolites produced by Aspergillus species, pose significant threats to human health due to their potent carcinogenic, mutagenic, and immunosuppressive properties. Chronic exposure to these contaminants, commonly found in staple foods such as maize and groundnuts, has been linked to an increased risk of liver cancer, growth impairment, and immune dysfunction. Several agents, such as calcium montmorillonite clay and Lactobacillus rhamnosus GG, have shown promise in reducing aflatoxin bioavailability and alleviating its toxic effects. Additionally, dietary supplements such as chlorophyllin, selenium, and N-acetylcysteine have demonstrated potential as adjuvants to counteract aflatoxin-induced oxidative stress and support liver function. In this treatise, some of the most discussed approaches to mitigating aflatoxin effects are explored in terms of their efficacy, safety, and potential mechanisms of action, which include direct aflatoxin binding, detoxification, cellular antioxidative, and hepatocellular protection properties. However, the effectiveness of these strategies can be influenced by various factors, such as dose, duration of exposure, and individual susceptibility. Therefore, further research is needed to optimize these interventions and develop new, targeted therapies for the prevention and treatment of aflatoxin-related diseases. This review aims to provide a comprehensive analysis of 18 pharmaceutical, nutraceutical, supplement, and probiotic strategies currently available for mitigating the deleterious effects of chronic aflatoxin exposure in humans and animal models.

2.
Arch Physiol Biochem ; : 1-8, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37921026

ABSTRACT

Introduction: A growing number of studies have thus far showed the association between type 2 diabetes mellitus (DM) and the intestinal microbiome homoeostasis. As reported, the gut microflora can be significantly different in patients with type 2 DM (T2DM) compared to those in healthy individuals.Methods: The authors collected the relevant articles published until 2022 and these are carefully selected from three scientific databases based on keywords.Discussion: This review highlights research on the anti-diabetic properties of berberine (BBR)-induced glucagon-like peptide-1 (GLP-1), as a glucose-lowering factor and a balance regulator in the microbial flora of the intestines, which plays an important role in adjusting the signalling pathways affecting insulin secretion.Results: Considering the anti-diabetic characteristics of the BBR-induced GLP-1, BBR makes a promising complementary treatment for reducing the clinical symptoms of DM by reducing the hyperglycaemia. Berberin might be a safe and effective drug for T2DM with little or no adverse effects.HighlightsBerberine induces GLP-1 insulin secretion by PLC2 pathway in the intestinalBerberine-induced GLP-1 decreases mitochondrial stress and relocates cytochrome c out of the mitochondria.Berberine induces GLP-1 secretion in the intestine by altering the bacterial profile, thus could possibly lighten diabetes symptomsBerberine-induced SCFA production, SCFA causes GLP-1 secretion from the intestinal L-Cell.Preventing mitochondrial damage, reducing adipose tissue fat, and reducing oxidative stress are thus among the results of BBR-induced GLP-1.The lower costs of BBR, and its limited side effects and higher availability, make it a promising supplementary medicine for DM.

3.
BMC Infect Dis ; 21(1): 243, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33673823

ABSTRACT

BACKGROUND: Sniffer dogs are able to detect certain chemical particles and are suggest to be capable of helping diagnose some medical conditions and complications, such as colorectal cancer, melanoma, bladder cancer, and even critical states such as hypoglycemia in diabetic patients. With the global spread of COVID-19 throughout the world and the need to have a real-time screening of the population, especially in crowded places, this study aimed to investigate the applicability of sniffer dogs to carry out such a task. METHODS: Firstly, three male and female dogs from German shepherd (Saray), German black (Kuzhi) and Labrador (Marco) breeds had been intensively trained throughout the classical conditioning method for 7 weeks. They were introduced to human specimens obtained from the throat and pharyngeal secretions of participants who were already reported positive or negative for SARS-COV-2 infection be RT-PCR. Each dog underwent the conditioning process for almost 1000 times. In the meantime another similar condition process was conducted on clothes and masks of COVID-19 patient using another three male and female dogs from Labrador (Lexi), Border gypsy (Sami), and Golden retriever (Zhico) breeds. In verification test for the first three dogs, 80 pharyngeal secretion samples consisting of 26 positive and 54 negative samples from different medical centers who underwent RT-PCR test were in a single-blind method. In the second verification test for the other three dogs, masks and clothes of 50 RT-PCR positive and 70 RT-PCR negative cases from different medical center were used. RESULTS: In verification test using pharyngeal secretion, the sniffer dogs' detection capability was associated with a 65% of sensitivity and 89% of specificity and they amanged to identify 17 out of the 26 positive and 48 out of the 54 true negative samples. In the next verification test using patients' face masks and clothes, 43 out of the 50 positive samples were correctly identified by the dogs. Moreover, out of the 70 negative samples, 65 samples were correctly found to be negative. The sensitivity of this test was as high as 86% and its specificity was 92.9%. In addition, the positive and negative predictive values were 89.6 and 90.3%, respectively. CONCLUSION: Dogs are capable of being trained to identify COVID-19 cases by sniffing their odour, so they can be used as a reliable tool in limited screening.


Subject(s)
COVID-19 Testing/methods , COVID-19 , Mass Screening/methods , SARS-CoV-2 , Working Dogs , Animals , COVID-19/diagnosis , COVID-19/epidemiology , Dogs , Female , Humans , Iran/epidemiology , Male , Predictive Value of Tests , Proof of Concept Study , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Sensitivity and Specificity , Single-Blind Method
4.
J Cell Biochem ; 120(7): 11441-11453, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30746766

ABSTRACT

The function of fibroblast cells in wounded areas results in reconstruction of the extra cellular matrix and consequently resolution of granulation tissue. It is suggested that the use of platelet-rich plasma can accelerate the healing process in nonhealing or slow-healing wounds. In this study, a simple and novel method has been used to fabricate an electrospun three-layered scaffold containing plasma rich in growth factor with the aim of increasing the proliferation and migration of fibroblast cells in vitro. First, plasma rich in growth factor was derived from platelet rich plasma, and then a three-layered scaffold was fabricated using PLLA nanofibers as the outer layers and plasma rich in growth factor-containing gelatin fibers as the internal layer. The growth morphology of cells seeded on this scaffold was compared to those seeded on one layered PLLA scaffold. The study of the cell growth rate on different substrates and the migration of cells in response to the drug release of multilayered scaffold was investigated by the cell quantification assay and a modified under agarose assay. Scanning electron microscopy and fluorescence images showed that cells seeded on multilayered scaffold were completely oriented 72 hours after seeding compared to those seeded on PLLA scaffold. The cell quantification assay also indicated significant increase in proliferation rate of cells seeded on three-layered scaffold compared to those seeded on PLLA scaffold and finally, monitoring cell migration proved that cells migrate significantly toward the three-layered scaffold up to 48 to 72 hours and afterwards start to show a diminished migration rate toward this scaffold.

5.
Int J Nanomedicine ; 11: 6239-6250, 2016.
Article in English | MEDLINE | ID: mdl-27920530

ABSTRACT

Diazinon (DZ) is an organophosphorus insecticide that acts as an acetylcholinesterase inhibitor. It is important to note that it can induce oxidative stress, lipid peroxidation, diabetic disorders, and cytotoxicity. Magnesium oxide (MgO) and selenium nanoparticles (Se NPs) showed promising protection against oxidative stress, lipid peroxidation, cytotoxicity, and diabetic disorders. Therefore, this study was conducted to explore the possible protective mechanisms of MgO and Se NPs against DZ-induced cytotoxicity in PaTu cell line. Cytotoxicity of DZ, in the presence or absence of effective doses of MgO and Se NPs, was determined in human pancreatic cancer cell line (PaTu cells) after 24 hours of exposure by using mitochondrial activity and mitochondrial membrane potential assays. Then, the insulin, proinsulin, and C-peptide release; caspase-3 and -9 activities; and total thiol molecule levels were assessed. Determination of cell viability, including apoptotic and necrotic cells, was assessed via acridine orange/ethidium bromide double staining. Furthermore, expression of 15 genes associated with cell death/apoptosis in various phenomena was examined after 24 hours of contact with DZ and NPs by using real-time polymerase chain reaction. Compared to the individual cases, the group receiving the combination of MgO and Se NPs showed more beneficial effects in reducing the toxicity of DZ. Cotreatment of PaTu cell lines with MgO and Se NPs counteracts the toxicity of DZ on insulin-producing cells.


Subject(s)
Apoptosis/drug effects , Diazinon/toxicity , Magnesium Oxide/pharmacology , Nanoparticles , Selenium/pharmacology , Caspase 3/metabolism , Caspase 9/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Gene Expression Regulation/drug effects , Humans , Insulin/metabolism , Lipid Peroxidation/drug effects , Magnesium Oxide/chemistry , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , Protective Agents/chemistry , Protective Agents/pharmacology , Reactive Oxygen Species/metabolism , Selenium/chemistry
6.
World J Gastrointest Pharmacol Ther ; 3(6): 83-5, 2012 Dec 06.
Article in English | MEDLINE | ID: mdl-23494719

ABSTRACT

Inflammatory bowel disease (IBD) is a group of inflammatory disorders mainly affecting the colon and small intestine. The main types of IBD are Crohn's disease (CD) and ulcerative colitis (UC). UC is restricted to the large intestine whereas CD can affect any part of the gastrointestinal tract. Treating this disorder depends on the form and level of severity. Common treatment involves an anti-inflammatory drug, such as mesalazine, and an immunosuppressant, such as prednisone. Several signaling pathways, including nuclear factor (NF)-κB and nitric oxide (NO), and genetic and environmental factors are believed to play an important role in IBD. Amitriptyline is a commonly used antidepressant with known anti-inflammatory activities. Amitriptyline also acts on the NF-κB/NO pathway or cytokine production. Therefore, we hypothesize that antidepressants like amitriptyline can be pioneered and considered effective as an innovative and effective therapeutic in the treatment and attenuation of development of IBD in adjusted doses.

SELECTION OF CITATIONS
SEARCH DETAIL
...