Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 155: 453-462, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27139124

ABSTRACT

It was shown that halophytes experience higher cross-tolerance to stresses than glycophytes, which was often associated with their more powerful antioxidant systems. Moreover, salinity was reported to enhance halophyte tolerance to several stresses. The aim of the present work was to investigate whether a moderate salinity enhances phenanthrene stress tolerance in the halophyte Thellungiella salsuginea. The model plant Arabidopsis thaliana, considered as its glycophyte relative, was used as reference. Our study was based on morpho-physiological, antioxidant, and metabolomic parameters. Results showed that T. salsuginea was more tolerant to phenanthrene stress as compared to A. thaliana. An improvement of phenanthrene-induced responses was recorded in the two plants in the presence of 25 mM NaCl, but the effect was significantly more obvious in the halophyte. This observation was particularly related to the higher antioxidant activities and the induction of more adapted metabolism in the halophyte. Gas Chromatography coupled with Mass Spectrometry (GC-MS) was used to quantify alcohols, ammonium, sugars, and organic acids. It showed the accumulation of several metabolites, many of them are known to be involved in signaling and abiotic stress tolerance. Moderate salinity and phenanthrene cross-tolerance involved in these two stresses was discussed.


Subject(s)
Arabidopsis/metabolism , Brassica/metabolism , Phenanthrenes/toxicity , Sodium Chloride/pharmacology , Stress, Physiological/drug effects , Arabidopsis/drug effects , Brassica/drug effects , Salinity , Salt-Tolerant Plants/metabolism
2.
Int J Phytoremediation ; 17(10): 925-8, 2015.
Article in English | MEDLINE | ID: mdl-25581445

ABSTRACT

In a previous study, we showed that the halophyte plant model Thellungiella salsuginea was more tolerant to phenanthrene (Polycyclic Aromatic Hydrocarbon: PAH) than its relative glycophyte Arabidopsis thaliana. In the present work, we investigated the potential of another halophyte with higher biomass production, Cakile maritma, to reduce phenanthrene phytotoxicity. Sand was used instead of arable soil with the aim to avoid pollutant degradation by microorganisms or their interaction with the plant. After 6 weeks of treatment by 500 ppm phenanthrene (Phe), stressed plants showed a severe reduction (-73%) in their whole biomass, roots being more affected than leaves and stems. In parallel, Guaiacol peroxidase (GPX) activity was increased by 185 and 62% in leaves and roots, respectively. Non-enzymatic antioxidant capacity (assayed by ABTS test) was maintained unchanged in all plant organs. The model halophytic plant Thellungiella salsuginea was used as a biomarker of phenanthrene stress severity and was grown at 0 (control), 125, 250, and 375 ppm. T. salsuginea plants grown on the sand previously contaminated by 500 ppm Phe then treated by C. maritma culture (phytoremediation culture) showed similar biomass production as plants subjected to 125 ppm Phe. This suggests that the phytotoxic effects of phenanthrene were reduced by 75% by the 6-week treatment by C. maritima. Our findings indicate that C. maritima can constitute a potentially good candidate for PAH phytoremediation.


Subject(s)
Brassicaceae/metabolism , Phenanthrenes/metabolism , Salt-Tolerant Plants/metabolism , Soil Pollutants/metabolism , Biodegradation, Environmental , Brassicaceae/enzymology , Brassicaceae/growth & development , Salt-Tolerant Plants/enzymology , Salt-Tolerant Plants/growth & development , Tunisia
SELECTION OF CITATIONS
SEARCH DETAIL
...