Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Toxicol ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837048

ABSTRACT

As a critical cause of human dysfunctionality, hepatic failure leads to approximately two million deaths per year and is on the rise. Considering multiple inflammatory, oxidative, and apoptotic mechanisms behind hepatotoxicity, it urges the need for finding novel multi-targeting agents. Curcumin is a phenolic compound with anti-inflammatory, antioxidant, and anti-apoptotic roles. Curcumin possesses auspicious health benefits and protects against several diseases with exceptional safety and tolerability. This review focused on the hepatoprotective mechanisms of curcumin. The need to develop novel delivery systems of curcumin (e.g., nanoparticles, self-micro emulsifying, lipid-based colloids, solid lipid nanoparticles, cyclodextrin inclusion, phospholipid complexes, and nanoemulsions) is also considered.

2.
Drug Dev Ind Pharm ; 47(4): 569-578, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33819116

ABSTRACT

Both Nigella sativa oil and atorvastatin possess anti-inflammatory, immunomodulatory, antioxidant, and antibacterial properties that benefit wound healing. In this work, chitosan-carboxymethyl cellulose was loaded on N. sativa oil to synthesize oil nanogel (ONG) which was later used to load with atorvastatin to obtain atorvastatin-oil nanogel (ATONG). Evaluation of the particle size of ONG and ATONG proved the average of 172 and 193 nm, and their surface charges were found to be 32.2 and 34.7 mV, respectively. Transmission electron microscopy of the sample showed that the particles had homogeneous size distributions with spherical structures. Moreover, drug loading efficiency, drug release, and stability of ATONG were investigated, and their results confirmed the appropriate loading and release of atorvastatin. Cytotoxicity evaluation demonstrated that ATONG can safely release atorvastatin intracellularly in fibroblasts. Results from in vitro skin permeation of ONG and ATONG also revealed that the nanogels (NGs) has proper flux through the skin layers. The in vitro wound closure assay for ATONG verified the proliferation and migration capabilities of fibroblasts, confirming the positive effect on wound-healing applications. In scratch model of fibroblasts, the treatment with ATONG resulted in an increase in the expression of the FGF2, TGF-ß1, and VEGF genes involved in fibroblast proliferation and migration aimed at wound healing (p < .001). ATONG, also demonstrated bactericidal effects against Staphylococcus, S. aureus, and S. epidermidis species. Based on the results, ONG and ATONG exhibited great potential to be used as a transdermal drug carrier and skin wound healing NG, respectively.


Subject(s)
Chitosan , Atorvastatin , Carboxymethylcellulose Sodium , Nanogels , Plant Oils , Polyethylene Glycols , Polyethyleneimine , Staphylococcus aureus
3.
Int J Nanomedicine ; 15: 363-386, 2020.
Article in English | MEDLINE | ID: mdl-32021185

ABSTRACT

The advent of porous materials, in particular zeolitic nanoparticles, has opened up unprecedented putative research avenues in nanomedicine. Zeolites with intracrystal mesopores are low framework density aluminosilicates possessing a regular porous structure along with intricate channels. Their unique physiochemical as well as physiological parameters necessitate a comprehensive overview on their classifications, fabrication platforms, cellular/macromolecular interactions, and eventually their prospective biomedical applications through illustrating the challenges and opportunities in different integrative medical and pharmaceutical fields. More particularly, an update on recent advances in zeolite-accommodated drug delivery and the prevalent challenges regarding these molecular sieves is to be presented. In conclusion, strategies to accelerate the translation of these porous materials from bench to bedside along with common overlooked physiological and pharmacological factors of zeolite nanoparticles are discussed and debated. Furthermore, for zeolite nanoparticles, it is a matter of crucial importance, in terms of biosafety and nanotoxicology, to appreciate the zeolite-bio interface once the zeolite nanoparticles are exposed to the bio-macromolecules in biological media. We specifically shed light on interactions of zeolite nanoparticles with fibrinogen and amyloid beta which had been comprehensively investigated in our recent reports. Given the significance of zeolite nanoparticles' interactions with serum or interstitial proteins conferring them new biological identity, the preliminary approaches for deeper understanding of administration, distribution, metabolism and excretion of zeolite nanoparticles are elucidated.


Subject(s)
Nanomedicine/methods , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Zeolites/chemistry , Amyloid beta-Peptides/metabolism , Animals , Contrast Media/chemistry , Drug Delivery Systems/methods , Fibrinogen/metabolism , Gastrointestinal Diseases/therapy , Humans , Hydrogels/chemistry , Magnetic Resonance Imaging/methods , Nanoparticles/toxicity , Osteogenesis , Porosity , Renal Dialysis
4.
Chem Biol Drug Des ; 88(2): 230-40, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26913996

ABSTRACT

Recently, it is suggested that mTOR signaling pathway is an important mediator in many cancers especially breast cancer. Therefore, effects of sirolimus as a mTOR inhibitor in breast cancer have been studied in combination with paclitaxel with or without controlled release effect. In this work, we prepared a water-soluble formulation of sirolimus-conjugated albumin nanoparticles loaded with paclitaxel, to study the effects of sirolimus concentration when it releases more later than paclitaxel in comparison with sirolimus-paclitaxel-loaded albumin nanoparticles. Also effects of paclitaxel loading on cytotoxic properties of nanoparticles were studied. Sirolimus was succinylated at 42-OH with enzymatic reaction of Candida antarctica lipase B, and then its carboxylic group was activated with EDC/NHS and conjugated to the lysine residues of albumin. Paclitaxel was loaded on albumin surface by nab technique in concentration range of 0-10 µg/mL. Sirolimus-conjugated nanoparticles with 0.01 µg/mL paclitaxel showed lowest cell viability of 44% while it was 53% for non-conjugated nanoparticles in MDA-MB-468 cell lines after 48 h (p-value = 0.003). In MCF-7 cell lines, sirolimus-conjugated nanoparticles with 0.1 µg/mL paclitaxel showed lowest cell viability of 35.69% while it was 48% for non-conjugated nanoparticles after 48 h (p-value = 0.03). We guess that when cancer cell lines arrest in G2-M by anticancer drugs like paclitaxel, Akt activates mTOR to make cells continue living, then inhibiting mTOR can enhance anticancer effects.


Subject(s)
Albumins/chemistry , Antineoplastic Agents, Phytogenic/administration & dosage , Nanoparticles , Paclitaxel/administration & dosage , Sirolimus/administration & dosage , Cell Line, Tumor , Chromatography, Gel , Delayed-Action Preparations , Electrophoresis, Polyacrylamide Gel , Humans , Microscopy, Electron , Spectroscopy, Fourier Transform Infrared , TOR Serine-Threonine Kinases/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...