Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 10: 680, 2019.
Article in English | MEDLINE | ID: mdl-31191363

ABSTRACT

Characterizing the breathing pattern in naturally breathing humans brings important information on respiratory mechanics, respiratory muscle, and breathing control. However, measuring breathing modifies breathing (observer effect) through the effects of instrumentation and awareness: measuring human breathing under true ecological conditions is currently impossible. This study tested the hypothesis that non-contact vibrometry using airborne ultrasound (SONAR) could measure breathing movements in a contactless and invisible manner. Thus, first, we evaluated the validity of SONAR measurements by testing their interchangeability with pneumotachograph (PNT) measurements obtained at the same time. We also aimed at evaluating the observer effect by comparing breathing variability obtained by SONAR versus SONAR-PNT measurements. Twenty-three healthy subjects (12 men and 11 women; mean age 33 years - range: 20-54) were studied during resting breathing while sitting on a chair. Breathing activity was described in terms of ventilatory flow measured using a PNT and, either simultaneously or sequentially, with a SONAR device measuring the velocity of the surface motion of the chest wall. SONAR was focused either anteriorly on the xiphoid process or posteriorly on the lower part of the costal margin. Discrete ventilatory temporal and volume variables and their coefficients of variability were calculated from the flow signal (PNT) and the velocity signal (SONAR) and tested for interchangeability (Passing-Bablok regression). Tidal volume (VT) and displacement were linearly related. Breathing frequency (BF), total cycle time (TT), inspiratory time (TI), and expiratory time (TE) met interchangeability criteria. Their coefficients of variation were not statistically significantly different with PNT and SONAR-only. This was true for both the anterior and the posterior SONAR measurements. Non-contact vibrometry using airborne ultrasound is a valid tool for measuring resting breathing pattern.

2.
Article in English | MEDLINE | ID: mdl-25881349

ABSTRACT

Wave phase conjugation of ultrasound scattered by clouds of micro-bubbles in water has been studied experimentally and expounded theoretically. The clouds of microbubbles with variable concentration and sizes have been generated here using electrolytic method. The wave front of the ultrasound beam of frequency 10 MHz was reversed by a parametric phase conjugator. The signal of phase conjugate wave (PCW) detected by an acoustic transceiver was compared with the signal of the wave scattered toward the phase conjugator. The scattered wave (SW) signal was detected by the transducer substituting the phase conjugator. It is shown that, in contrast with stochastic SW signal, wave phase conjugation forms regular PCW signal on the transceiver in spite of random distribution of the scatterers. The PCW signal is found to be much more sensitive to variations of bubbles concentration comparing with the mean value of the SW amplitude. Moreover, the relative error of measurements of PCW signals is much smaller than that of the SW signal. The revealed properties of phase conjugate waves are applicable for testing of concentration of scatterers in dispersive systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...