Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Syst Biol ; 69(5): 944-961, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32061133

ABSTRACT

The Viviparidae, commonly known as River Snails, is a dominant group of freshwater snails with a nearly worldwide distribution that reaches its highest taxonomic and morphological diversity in Southeast Asia. The rich fossil record is indicative of a probable Middle Jurassic origin on the Laurasian supercontinent where the group started to diversify during the Cretaceous. However, it remains uncertain when and how the biodiversity hotspot in Southeast Asia was formed. Here, we used a comprehensive genetic data set containing both mitochondrial and nuclear markers and comprising species representing 24 out of 28 genera from throughout the range of the family. To reconstruct the spatiotemporal evolution of viviparids on a global scale, we reconstructed a fossil-calibrated phylogeny. We further assessed the roles of cladogenetic and anagenetic events in range evolution. Finally, we reconstructed the evolution of shell features by estimating ancestral character states to assess whether the appearance of sculptured shell morphologies was driven by major habitat shifts. The molecular phylogeny supports the monophyly of the three subfamilies, the Bellamyinae, Lioplacinae, and Viviparinae, but challenges the currently accepted genus-level classification in several cases. The almost global distribution of River Snails has been influenced both by comparatively ancient vicariance and more recent founder events. In Southeast Asia, Miocene dispersal was a main factor in shaping the modern species distributions. A recurrent theme across different viviparid taxa is that many species living in lentic waters exhibit sculptured shells, whereas only one strongly sculptured species is known from lotic environments. We show that such shell sculpture is habitat-dependent and indeed evolved several times independently in lentic River Snails. Considerably high transition rates between shell types in lentic habitats probably caused the co-occurrence of morphologically distinct shell types in several lakes. In contrast, directional evolution toward smooth shells in lotic habitats, as identified in the present analyses, explains why sculptured shells are rarely found in these habitats. However, the specific factors that promoted changes in shell morphology require further work. [biogeographical analyses; fossil-calibrated phylogeny; fossil-constrained analyses; Southeast Asia; stochastic character mapping.].


Subject(s)
Animal Distribution , Biodiversity , Ecosystem , Snails/anatomy & histology , Snails/classification , Animal Shells/anatomy & histology , Animals , Biological Evolution
2.
BMC Evol Biol ; 16(1): 273, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27978815

ABSTRACT

BACKGROUND: Ancient Lake Ohrid, located on the Albania-Macedonia border, is the most biodiverse freshwater lake in Europe. However, the processes that gave rise to its extraordinary endemic biodiversity, particularly in the species-rich gastropods, are still poorly understood. A suitable model taxon to study speciation processes in Lake Ohrid is the pulmonate snail genus Acroloxus, which comprises two morphologically distinct and ecologically (vertically) separated endemic species. Using a multilocus phylogenetic framework of Acroloxus limpets from the Euro-Mediterranean subregion, together with molecular-clock and phylogeographic analyses of Ohrid taxa, we aimed to infer their geographic origin and the timing of colonization as well as the role of geography and ecology in intra-lacustrine diversification. RESULTS: In contrast to most other endemic invertebrate groups in Lake Ohrid, the phylogenetic relationships of the endemic Ohrid Acroloxus species indicate that the Balkan region probably did not serve as their ancestral area. The inferred monophyly and estimated divergence times further suggest that these freshwater limpets colonized the lake only once and that the onset of intra-lacustrine diversification coincides with the time when the lake reached deep-water conditions ca 1.3 Mya. However, the difference in vertical distribution of these two ecologically distinct species is not reflected in the phylogeographic pattern observed. Instead, western and eastern populations are genetically more distinct, suggesting a horizontal structure. CONCLUSIONS: We conclude that both geography and ecology have played a role in the intra-lacustrine speciation process. Given the distinct morphology (sculptured vs. smooth shell) and ecology (littoral vs. sublittoral), and the timing of intra-lacustrine diversification inferred, we propose that the onset of deep-water conditions initially triggered ecological speciation. Subsequent geographic processes then gave rise to the phylogeographic patterns observed today. However, the generally weak genetic differentiation observed suggests incipient speciation, which might be explained by the comparatively young age of the lake system and thus the relatively recent onset of intra-lacustrine diversification.


Subject(s)
Biodiversity , Ecosystem , Phylogeography , Snails , Animals , DNA, Mitochondrial , Europe , Genetic Speciation , Lakes , Models, Biological , Phylogeny , Sequence Analysis, DNA , Snails/genetics
3.
Biol Lett ; 11(7)2015 Jul.
Article in English | MEDLINE | ID: mdl-26202427

ABSTRACT

Lake Baikal is the deepest, oldest and most speciose ancient lake in the world. The lake is characterized by high levels of molluscan species richness and endemicity, including the limpet family Acroloxidae with 25 endemic species. Members of this group generally inhabit the littoral zone, but have been recently found in the abyssal zone at hydrothermal vents and oil-seeps. Here, we use mitochondrial and nuclear data to provide a first molecular phylogeny of the Lake Baikal limpet radiation, and to date the beginning of intra-lacustrine diversification. Divergence time estimates suggest a considerably younger age for the species flock compared with lake age estimates, and the beginning of extensive diversification is possibly related to rapid deepening and cooling during rifting. Phylogenetic relationships and divergence time estimates do not clearly indicate when exactly the abyssal was colonized but suggest a timeframe coincident with the formation of the abyssal in the northern basin (Middle to Late Pleistocene).


Subject(s)
Gastropoda/genetics , Animals , Biological Evolution , Fossils , Gastropoda/classification , Hydrothermal Vents , Lakes , Phylogeny , Sequence Analysis, RNA , Siberia
SELECTION OF CITATIONS
SEARCH DETAIL
...