Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 16103, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997265

ABSTRACT

High dose radiation exposures are rare. However, medical management of such incidents is crucial due to mortality and tissue injury risks. Rapid radiation biodosimetry of high dose accidental exposures is highly challenging, considering that they usually involve non uniform fields leading to partial body exposures. The gold standard, dicentric assay and other conventional methods have limited application in such scenarios. As an alternative, we propose Premature Chromosome Condensation combined with Fluorescent In-situ Hybridization (G0-PCC-FISH) as a promising tool for partial body exposure biodosimetry. In the present study, partial body exposures were simulated ex-vivo by mixing of uniformly exposed blood with unexposed blood in varying proportions. After G0-PCC-FISH, Dolphin's approach with background correction was used to provide partial body exposure dose estimates and these were compared with those obtained from conventional dicentric assay and G0-PCC-Fragment assay (conventional G0-PCC). Dispersion analysis of aberrations from partial body exposures was carried out and compared with that of whole-body exposures. The latter was inferred from a multi-donor, wide dose range calibration curve, a-priori established for whole-body exposures. With the dispersion analysis, novel multi-parametric methodology for discerning the partial body exposure from whole body exposure and accurate dose estimation has been formulated and elucidated with the help of an example. Dose and proportion dependent reduction in sensitivity and dose estimation accuracy was observed for Dicentric assay, but not in the two PCC methods. G0-PCC-FISH was found to be most accurate for the dose estimation. G0-PCC-FISH has potential to overcome the shortcomings of current available methods and can provide rapid, accurate dose estimation of partial body and high dose accidental exposures. Biological dose estimation can be useful to predict progression of disease manifestation and can help in pre-planning of appropriate & timely medical intervention.


Subject(s)
In Situ Hybridization, Fluorescence , In Situ Hybridization, Fluorescence/methods , Humans , Chromosome Aberrations/radiation effects , Radiation Exposure/adverse effects , Radiometry/methods , Radiation Dosage , Male , Dose-Response Relationship, Radiation
2.
Front Public Health ; 10: 845200, 2022.
Article in English | MEDLINE | ID: mdl-36003625

ABSTRACT

A rapid and reliable method for biodosimetry of populations exposed to ionizing radiation in the event of an incident or accident is crucial for initial triage and medical attention. DNA-double strand breaks (DSBs) are indicative of radiation exposure, and DSB-repair proteins (53BP1, γH2AX, ATM, etc.) are considered sensitive markers of DSB quantification. Phospho-53BP1 and γH2AX immunofluorescence technique serves as a sensitive, reliable, and reproducible tool for the detection and quantification of DSB-repair proteins, which can be used for biological dose estimations. In this study, dose-response curves were generated for 60Co-γ-rays induced phospho-53 Binding Protein 1 (phospho-53BP1) foci at 1, 2, 4, 8, 16, and 24 h, post-irradiation for a dose range of 0.05-4 Gy using fluorescence microscopy. Following ISO recommendations, minimum detection limits (MDLs) were estimated to be 16, 18, 25, 40, 50, and 75 mGy for dose-response curves generated at 1, 2, 4, 8, 16, and 24 h post-irradiation. Colocalization and correlation of phospho-53BP1 and γH2AX were also measured in irradiated peripheral blood lymphocytes (PBLs) to gain dual confirmation. Comparative evaluation of the established curve was made by γH2AX-immunofluorescence, dicentric chromosome assay (DCA), and reciprocal translocation (RT) assays by reconstructing the dose of 6 dose-blinded samples. Coefficients of respective in-house established dose-response curves were employed to reconstruct the blind doses. Estimated doses were within the variation of 4.124%. For lower doses (0.052 Gy), phospho-53BP1 and γH2AX assays gave closer estimates with the variation of -4.1 to + 9% in comparison to cytogenetic assays, where variations were -8.5 to 24%. For higher doses (3 and 4 Gy), both the cytogenetic and immunofluorescence (phospho-53BP1 and γH2AX), assays gave comparable close estimates, with -11.3 to + 14.3% and -10.3 to -13.7%, variations, respectively.


Subject(s)
Histones , Triage , Calibration , Cytogenetic Analysis , Gamma Rays , Histones/metabolism
3.
STAR Protoc ; 2(4): 100834, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34568847

ABSTRACT

Current protocols for storage of white blood cells (WBCs) rely on constant refrigeration. The protocol described below explains the preparation of a fixative combination saline (FCS) formulation, which allows fixation of human WBCs and lysis of red blood cells and platelets (at ambient temperature, 4-35oC) in whole blood samples in one step. FCS can be used for storing and transporting blood at ambient temperatures for up to 4 months, without altering the nuclear morphology and genomic integrity of WBCs.


Subject(s)
Blood Platelets , Leukocytes , Erythrocytes , Fixatives , Humans , Leukocyte Count , Temperature
4.
J Environ Pathol Toxicol Oncol ; 30(3): 189-97, 2011.
Article in English | MEDLINE | ID: mdl-22126612

ABSTRACT

The modifying effect of butylated hydroxytoluene (BHT) on 60Co gamma radiation and 4-nitro-quinoline 1-oxide-induced gene conversion and back mutation frequencies was investigated using diploid yeast Saccharomyces cerevisiae D7. Cells were exposed to 100 or 400 Gy in the presence of 0.025-0.25 mM BHT. BHT exhibited radioprotection and significantly reduced radiation-induced gene conversion and back mutation frequencies as well as cell killing. In another set of experiments, cells were simultaneously treated with 0.025-0.1 mM BHT and 0.5 µM 4-NQO. BHT significantly enhanced 4-NQO-induced gene conversion and back mutation frequencies. BHT post-treatment did not modify radiation-induced genetic events but enhanced 4-NQO-induced back mutation frequencies, indicating its potential to act as a tumor-promoting agent with 4-NQO.


Subject(s)
4-Nitroquinoline-1-oxide/pharmacology , Butylated Hydroxytoluene/pharmacology , Food Additives/pharmacology , Gamma Rays/adverse effects , Saccharomyces cerevisiae/genetics , Cells, Cultured , Dimethyl Sulfoxide/pharmacology , Free Radical Scavengers/pharmacology , Gene Conversion/drug effects , Models, Biological , Mutagens/pharmacology , Mutation Rate , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...