Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 230: 123360, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36716842

ABSTRACT

Microwave-assisted grafting of polyacrylamide on sesbania gum (PAAM-g-SG) was implemented employing a 32 full factorial experimental design and was hydrolyzed using sodium hydroxide (NaOH) to form H-PAAM-g-SG. Further, the diclofenac sodium-loaded novel pH-sensitive interpenetrating polymeric network (IPN) microbeads were designed using an optimized H-PAAM-g-SG and sodium alginate (SA). Different spectroscopic analysis including FTIR spectroscopy, 1H NMR spectroscopy, elemental analysis, thermal analysis, etc. was performed to confirm the synthesis of PAAM-g-SG and diclofenac-loaded pH-sensitive IPN H-PAAM-g-SG-SA microbeads. Here, Ca+2 ions combine with two strands of SA and form a round-shape structure that encloses uncross-linked H-PAAM-g-SG polymer and diclofenac sodium. As well, glutaraldehyde (GL) addition improved the mechanical strength due to acetal structure between hydroxyl of H-PAAM-g-SG and aldehyde of GL. The drug entrapment was confirmed proportional relationship to the Ca+2 ions concentration whereas an increase in GL concentration resulted in a reduced drug entrapment. The pH pulsatile study assured the reversible swelling-shrinkage behavior of IPN microbeads due to the carboxyl group of PAAM-g-SG. The drug release from H-PAAM-g-SG-SA microbeads (batch: S9) was found to be 84.21 % (12h) which was non-significant (p > 0.05; f2 = 79 âˆ¼ 90) over marketed formulation (83.31 %). Moreover, it follows the Korsmeyer Peppas (R2 = 0.996) as the best-fit release kinetic model. The pH-sensitive release of diclofenac sodium from IPN H-PAAM-g-SG-SA microbeads was assured based on in vivo anti-inflammatory activity (p < 0.05). Therefore, developed novel pH-sensitive IPN microbeads based on H-PAAM-g-SG are a promising polymeric carrier substitute for delivery of drugs actuated by a pH stimulus.


Subject(s)
Diclofenac , Sesbania , Diclofenac/pharmacology , Diclofenac/chemistry , Microspheres , Polymers/chemistry , Hydrogen-Ion Concentration
2.
Int J Biol Macromol ; 222(Pt A): 915-926, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36181884

ABSTRACT

Low methoxy pectin (LM pectin) suffers from burst release owing to its high swellability and solubility in water. Consequently, in ways to design an ideal drug delivery system, these obstacles must be surmounted. Therefore, the work aimed to design dual crosslinked LM pectin -neem gum (NG) mediated interpenetrating polymer network (IPN) floating mucoadhesive microbeads for lansoprazole (LNZ) gastro-retentive delivery. In short, LNZ-loaded floating microbeads were achieved by using the ionic gelation method wherein zinc acetate was preferred as a crosslinking agent. The optimization of IPN microbeads was performed employing a 32factorial design wherein concentration of pectin and NG was considered as independent factors whereas dependant factors are entrapment efficiency and drug release. Importantly, carboxylic functionality of low methoxy (LM) pectin and hydroxylic functionality NG cross-linked with Zn+2 forms a 3D network. Diffractogram and thermogram revealed that conversion of drug from crystalline to amorphous form because of entrapment of drug within polymeric network. Anticipated floating microbeads showed that polymer concentration had considerable effect on drug encapsulation efficiency and drug release. Briefly, optimizing floating microbeads (Batch B:5) showed maximum drug entrapment (87.47 %) with a delayed drug release (69.20 %, at 8 h) due to formation of strong IPN. Moreover, it showed good mucoadhesive aptitude with goat stomach mucosa because of entanglement between gum and mucus layer. In addition, use of calcium silicate assists to modulate floating profile of IPN microbeads. Therefore, designing dual crosslinked zinc-pectinate-NG mediated IPN floating mucoadhesive microbeads will offer a new substitute for floating delivery.


Subject(s)
Polymers , Zinc , Microspheres , Polymers/chemistry , Lansoprazole , Drug Delivery Systems/methods , Pectins/chemistry , Delayed-Action Preparations/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...