Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 949: 241-68, 2013.
Article in English | MEDLINE | ID: mdl-23329448

ABSTRACT

Microfluidic systems allow small volumes of liquids to be manipulated, either by being passed through channels or moved around as liquid droplets. Such systems have been developed to separate, purify, analyze, and deliver molecules to reaction zones. Although volumes are small, reaction rates, catalysis, mixing, and heat transfer can be high, enabling the accurate sensing of tiny quantities of agents and the synthesis of novel products. The incorporation of multiple components, such as pumps, valves, mixers, and heaters, onto a single microfluidic platform has brought about the field of lab-on-a-chip devices or micro total analysis systems (µTAS). Although used in the research laboratory for numerous years, few of these devices have made it into the commercial market, due to their complexity of fabrication and limited choice of material. As the dimensions of these systems become smaller, interfacial interactions begin to dominate in terms of device performance. Appropriate selection of bulk materials, or the application of surface coatings, can allow control over surface properties, such as the adsorption of (bio)molecules. Here we review current microfluidic technology in terms of biocompatibility issues, examining the use of modification strategies to improve device longevity and performance.


Subject(s)
Biocompatible Materials , Equipment Design/methods , Microfluidic Analytical Techniques/instrumentation , Animals , Humans , Surface Properties
2.
Methods Mol Biol ; 949: 269-81, 2013.
Article in English | MEDLINE | ID: mdl-23329449

ABSTRACT

Fouling of surfaces is often problematic in microfluidic devices, particularly when using protein or -enzymatic solutions. Various coating methods have been investigated to reduce the tendency for protein molecules to adsorb, mostly relying on hydrophobic surface chemistry or the antifouling ability of -polyethylene glycol. Here we present the potential use of superhydrophobic surfaces to not only reduce the amount of surface contamination but also to induce self-cleaning under flow conditions. The methodology is presented in order to prepare superhydrophobic surface coatings having micro- and nanoscale feature dimensions, as well as a step-by-step guide to quantify adsorbed protein down to nanogram levels. The fabrication of these surfaces as coatings via silica sol-gel and copper nano-hair growth is presented, which can be applied within microfluidic devices manufactured from various materials.


Subject(s)
Biofouling/prevention & control , Hydrophobic and Hydrophilic Interactions , Microfluidic Analytical Techniques/instrumentation , Adsorption , Animals , Cattle , Copper/chemistry , Fluorocarbons/chemistry , Hydrodynamics , Serum Albumin, Bovine/chemistry , Surface Properties
3.
Langmuir ; 25(24): 14121-8, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-20560556

ABSTRACT

In many countries, the mornings in spring are graced with spectacular displays of dew drops hanging on spiders' webs and on leaves. Some leaves, in particular, sport particularly large droplets that last well into the morning. In this paper, we study a group of plants that show this effect on their superhydrophobic leaves to try to discover how and why they do it. We describe the structures they use to gather droplets and suggest that these droplets are used as a damper to absorb kinetic energy allowing water to be redirected from sideways motion into vertical motion. Model surfaces in the shape of leaves and as more general flat sheets show that this principle can be used to manipulate water passively, such as on the covers of solar panels, and could also be used in parts of microfluidic devices. The mode of transport can be switched between rolling droplets and rivulets to maximize control.


Subject(s)
Biomimetics/methods , Hydrophobic and Hydrophilic Interactions , Plant Leaves/physiology , Plants , Surface Properties , Wettability
4.
Lab Chip ; 8(4): 582-6, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18369513

ABSTRACT

Wall adsorption is a common problem in microfluidic devices, particularly when proteins are used. Here we show how superhydrophobic surfaces can be used to reduce protein adsorption and to promote desorption. Hydrophobic surfaces, both smooth and having high surface roughness of varying length scales (to generate superhydrophobicity), were incubated in protein solution. The samples were then exposed to flow shear in a device designed to simulate a microfluidic environment. Results show that a similar amount of protein adsorbed onto smooth and nanometer-scale rough surfaces, although a greater amount was found to adsorb onto superhydrophobic surfaces with micrometer scale roughness. Exposure to flow shear removed a considerably larger proportion of adsorbed protein from the superhydrophobic surfaces than from the smooth ones, with almost all of the protein being removed from some nanoscale surfaces. This type of surface may therefore be useful in environments, such as microfluidics, where protein sticking is a problem and fluid flow is present. Possible mechanisms that explain the behaviour are discussed, including decreased contact between protein and surface and greater shear stress due to interfacial slip between the superhydrophobic surface and the liquid.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Microfluidic Analytical Techniques/methods , Nanotechnology/methods , Proteins/chemistry , Solutions/chemistry , Adsorption , Albumins/chemistry , Copper/chemistry , Glass/chemistry , Surface Properties
5.
Langmuir ; 23(19): 9823-30, 2007 Sep 11.
Article in English | MEDLINE | ID: mdl-17705513

ABSTRACT

Recent reports using particle image velocimetry and cone-and-plate rheometers have suggested that a simple Newtonian liquid flowing across a superhydrophobic surface demonstrates a finite slip length. Slippage on a superhydrophobic surface indicates that the combination of topography and hydrophobicity may have consequences for the coupling at the solid--liquid interface observed using the high-frequency shear-mode oscillation of a quartz crystal microbalance (QCM). In this work, we report on the response of a 5 MHz QCM possessing a superhydrophobic surface to immersion in water--glycerol mixtures. QCM surfaces were prepared with a layer of SU-8 photoresist and lithographically patterned to produce square arrays of 5 mum diameter circular cross-section posts spaced 10 microm center-to-center and with heights of 5, 10, 15, and 18 microm. Non-patterned layers were also created for comparison, and both non-hydrophobized and chemically hydrophobized surfaces were investigated. Contact angle measurements confirmed that the hydrophobized post surfaces were superhydrophobic. QCM measurements in water before and after applying pressure to force a Cassie-Baxter (non-penetrating) to Wenzel (penetrating) conversion of state showed a larger frequency decrease and higher dissipation in the Wenzel state. QCM resonance spectra were fitted to a Butterworth-van Dyke model for the full range of water-glycerol mixtures from pure water to (nominally) pure glycerol, thus providing data on both energy storage and dissipation. The data obtained for the post surfaces show a variety of types of behavior, indicating the importance of the surface chemistry in determining the response of the quartz crystal resonance, particularly on topographically structured surfaces; data for hydrophobized post surfaces imply a decoupling of the surface oscillation from the mixtures. In the case of the 15 microm tall hydrophobized post surfaces, crystal resonance spectra become narrower as the viscosity-density product increases, which is contrary to the usual behavior. In the most extreme case of the 18 microm tall hydrophobized post surfaces, both the frequency decrease and bandwidth increase of the resonance spectra are significantly lower than that predicted by the Kanazawa and Gordon model, thus implying a decoupling of the oscillating surface from the liquid, which can be interpreted as interfacial slip.

6.
Langmuir ; 23(2): 918-24, 2007 Jan 16.
Article in English | MEDLINE | ID: mdl-17209652

ABSTRACT

Transport of a water droplet on a solid surface can be achieved by differentially modifying the contact angles at either side of the droplet using capacitive charging of the solid-liquid interface (i.e., electrowetting-on-dielectric) to create a driving force. Improved droplet mobility can be achieved by modifying the surface topography to enhance the effects of a hydrophobic surface chemistry and so achieve an almost complete roll-up into a superhydrophobic droplet where the contact angle is greater than 150 degrees . When electrowetting is attempted on such a surface, an electrocapillary pressure arises which causes water penetration into the surface features and an irreversible conversion to a state in which the droplet loses its mobility. Irreversibility occurs because the surface tension of the liquid does not allow the liquid to retract from these fixed surface features on removal of the actuating voltage. In this work, we show that this irreversibility can be overcome by attaching the solid surface features to the liquid surface to create a liquid marble. The solid topographic surface features then become a conformable "skin" on the water droplet both enabling it to become highly mobile and providing a reversible liquid marble-on-solid system for electrowetting. In our system, hydrophobic silica particles and hydrophobic grains of lycopodium are used as the skin. In the region corresponding to the solid-marble contact area, the liquid marble can be viewed as a liquid droplet resting on the attached solid grains (or particles) in a manner similar to a superhydrophobic droplet resting upon posts fixed on a solid substrate. When a marble is placed on a flat solid surface and electrowetting performed it spreads but with the water remaining effectively suspended on the grains as it would if the system were a droplet of water on a surface consisting of solid posts. When the electrowetting voltage is removed, the surface tension of the water droplet causes it to ball up from the surface but carrying with it the conformable skin. A theoretical basis for this electrowetting of a liquid marble is developed using a surface free energy approach.

7.
Langmuir ; 21(24): 11053-60, 2005 Nov 22.
Article in English | MEDLINE | ID: mdl-16285771

ABSTRACT

The evaporation process for small, 1-2-mm-diameter droplets of water from patterned polymer surfaces is followed and characterized. The surfaces consist of circular pillars (5-15 microm diameter) of SU-8 photoresist arranged in square lattice patterns such that the center-to-center separation between pillars is 20-30 microm. These types of surface provide superhydrophobic systems with theoretical initial Cassie-Baxter contact angles for water droplets of up to 140-167 degrees, which are significantly larger than can be achieved by smooth hydrophobic surfaces. Experiments show that on these SU-8 textured surfaces water droplets initially evaporate in a pinned contact line mode, before the contact line recedes in a stepwise fashion jumping from pillar to pillar. Provided the droplets of water are deposited without too much pressure from the needle, the initial state appears to correspond to a Cassie-Baxter one with the droplet sitting upon the tops of the pillars. In some cases, but not all, a collapse of the droplet into the pillar structure occurs abruptly. For these collapsed droplets, further evaporation occurs with a completely pinned contact area consistent with a Wenzel-type state. It is shown that a simple quantitative analysis based on the diffusion of water vapor into the surrounding atmosphere can be performed, and estimates of the product of the diffusion coefficient and the concentration difference (saturation minus ambient) are obtained.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Polymers/chemistry , Water/chemistry , Surface Properties , Volatilization
8.
Langmuir ; 21(3): 937-43, 2005 Feb 01.
Article in English | MEDLINE | ID: mdl-15667171

ABSTRACT

Rough and patterned copper surfaces were produced using etching and, separately, using electrodeposition. In both of these approaches the roughness can be varied in a controlled manner and, when hydrophobized, these surfaces show contact angles that increase with increasing roughness to above 160 degrees . We show transitions from a Wenzel mode, whereby the liquid follows the contours of the copper surface, to a Cassie-Baxter mode, whereby the liquid bridges between features on the surface. Measured contact angles on etched samples could be modeled quantitatively to within a few degrees by the Wenzel and Cassie-Baxter equations. The contact angle hysteresis on these surfaces initially increased and then decreased as the contact angle increased. The maximum occurred at a surface area where the equilibrium contact angle would suggest that a substantial proportion of the surface area was bridged.

9.
Langmuir ; 20(23): 10146-9, 2004 Nov 09.
Article in English | MEDLINE | ID: mdl-15518506

ABSTRACT

The relationship between perturbations to contact angles on a rough or textured surface and the super-hydrophobic enhancement of the equilibrium contact angle is discussed theoretically. Two models are considered. In the first (Wenzel) case, the super-hydrophobic surface has a very high contact angle and the droplet completely contacts the surface upon which it rests. In the second (Cassie-Baxter) case, the super-hydrophobic surface has a very high contact angle, but the droplet bridges across surface protrusions. The theoretical treatment emphasizes the concept of contact-angle amplification or attenuation and distinguishes between the increases in contact angles due to roughening or texturing surfaces and perturbations to the resulting contact angles. The theory is applied to predicting contact-angle hysteresis on rough surfaces from the hysteresis observable on smooth surfaces and is therefore relevant to predicting roll-off angles for droplets on tilted surfaces. The theory quantitatively predicts a "sticky" surface for Wenzel-type surfaces and a "slippy" surface for Cassie-Baxter-type surfaces.

10.
Phys Rev Lett ; 93(3): 036102, 2004 Jul 16.
Article in English | MEDLINE | ID: mdl-15323838

ABSTRACT

Roughening a hydrophobic surface enhances its nonwetting properties into superhydrophobicity. For liquids other than water, roughness can induce a complete rollup of a droplet. However, topographic effects can also enhance partial wetting by a given liquid into complete wetting to create superwetting. In this work, a model system of spreading droplets of a nonvolatile liquid on surfaces having lithographically produced pillars is used to show that superwetting also modifies the dynamics of spreading. The edge speed-dynamic contact angle relation is shown to obey a simple power law, and such power laws are shown to apply to naturally occurring surfaces.


Subject(s)
Models, Chemical , Hydrophobic and Hydrophilic Interactions , Surface Properties , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL
...