Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Compr Rev Food Sci Food Saf ; 22(6): 4190-4216, 2023 11.
Article in English | MEDLINE | ID: mdl-37615977

ABSTRACT

The consumption of fruit juices has been increasingly growing all over the world. The clarification process is considered as one of the most important stages in fruit juice production, which can provide the products with desired clear visual appearance. Nowadays, the tendency of consumers to use the natural-clarified fruit juices encourages the researchers to allocate much attention on utilization of natural clarifying agents to clarify different fruit juices. This review article has first introduced the most frequent causes of turbidity in fruit juices including polysaccharides (i.e., cellulose, hemicelluloses, lignin, starch, and pectic substances), proteins and polyphenols (especially tannins) as well as their removal mechanisms. After that, a comprehensive summary of research on natural fining agents, including clay minerals, polysaccharides, proteins, enzymes (free and immobilized forms), and activated carbon is provided with a focus on their application in the juice clarification process. The chemical composition of natural substances, their efficiency on reduction of turbidity-causing compounds and the changes in properties of clarified juices such as turbidity (clarity), total phenolic content, total anthocyanins, viscosity, and sensory evaluation followed by their stability during the storage have been deeply discussed.


Subject(s)
Anthocyanins , Fruit and Vegetable Juices , Anthocyanins/analysis , Fruit/chemistry , Food Handling , Polysaccharides
2.
Food Chem ; 387: 132934, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35421652

ABSTRACT

In the current study, the production and characterization of novel solid lipid nanoparticles (SLNs) using safe/low-cost natural beeswax (BW) and propolis wax (PW) and by the simple and inexpensive assay of spontaneous emulsification were studied. To fabricate SLNs, the optimum levels of surfactant/oil ratio (SOR), stirring speed, and time were obtained based on minimum particle size (PS) and polydispersity index (PDI). Therefore, the optimal conditions to produce PW and BW nanoparticles were SOR of 1.26 and 2 under stirring speed of 1050 rpm for 20 min, leading to PS of 21.9 and 23.2 nm, respectively. The contact angle of 73.7° and 62.9° for BW and PW SLNs respectively, showed suitable hydrophilicity to stabilize oil-in-water (O/W) Pickering emulsions. Temperatures over 70 °C led to a drastic increment of PS in both types of SLNs. Upon nanoparticles drying, the utilization of cryoprotectants could cause less aggregation and better reconstitution.


Subject(s)
Nanoparticles , Propolis , Emulsions , Liposomes , Particle Size , Surface-Active Agents , Waxes
3.
Food Chem ; 345: 128759, 2021 May 30.
Article in English | MEDLINE | ID: mdl-33310251

ABSTRACT

In this study, pomegranate seed oil (PSO) nanoemulsions loading different amounts of α-tocopherol (0-40%) were produced. The nanoemulsions were fabricated by ultra-sonication method and the influence of thermal treatment (20-90 °C), pH (2-8) and ionic strength (0-500 mM NaCl) were investigated on physicochemical properties of all treatments. Moreover, the oxidative stability and α-tocopherol degradation were also assessed on optimal enriched nanoemulsion formulation during 50-day storage. The droplet diameter, viscosity, antioxidant activity, encapsulation efficiency and loading capacity of optimal formulation were 37.5 nm, 514 cp, 92%, 3.45% and 92.5%, respectively. The peroxide value changed in the range of 4.5-5.3 and 6.7-10.5 meq O2/kg in loaded and unloaded nanoemulsions, respectively. Transmission electron microscopy demonstrated spherical morphology of nanoemulsion droplets with diameter average of 40 nm. This study suggested that PSO nanoemulsion loading α-tocopherol could be introduced as delivery system with favorable features under severe environmental conditions.


Subject(s)
Emulsions/chemistry , Nanotechnology , Plant Oils/chemistry , Pomegranate/chemistry , alpha-Tocopherol/chemistry , Antioxidants , Osmolar Concentration , Oxidation-Reduction , Sonication
4.
Compr Rev Food Sci Food Saf ; 19(6): 2994-3030, 2020 11.
Article in English | MEDLINE | ID: mdl-33337056

ABSTRACT

The development of lipid-based delivery systems has attracted much attention over the last years and a wide variety of strategies and formulations are currently available to encapsulate, protect, and target delivery of bioactive and functional lipophilic constituents within the food and pharmaceutical industries. Waxes are crystalline lipid material, consisting of a complex mixture of long-chain fatty acids and fatty alcohols, hydrocarbons, aldehydes, and ketones and show great promises as constituents of carrier systems. Most of waxes are classified under food-grade category and show high availability at a low cost. This review article has provided a comprehensive summary of research on major carriers containing wax as one of the main constituents, including solid lipid nanoparticles, nanostructured lipid carriers, oleogels, and Pickering emulsions, with a focus on their food applications. The physical and chemical nature of natural waxes are described in the first while the second part deals with the structure, formulation, main methods of preparation, characterization, and finally utilization of each type of wax-based delivery system for specific food applications.


Subject(s)
Drug Delivery Systems , Waxes/chemistry , Emulsions/chemistry , Lipids/chemistry , Nanostructures , Organic Chemicals/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...