Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2621, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38521774

ABSTRACT

Multi-omic studies of the human gut microbiome are crucial for understanding its role in disease across multiple functional layers. Nevertheless, integrating and analyzing such complex datasets poses significant challenges. Most notably, current analysis methods often yield extensive lists of disease-associated features (e.g., species, pathways, or metabolites), without capturing the multi-layered structure of the data. Here, we address this challenge by introducing "MintTea", an intermediate integration-based approach combining canonical correlation analysis extensions, consensus analysis, and an evaluation protocol. MintTea identifies "disease-associated multi-omic modules", comprising features from multiple omics that shift in concord and that collectively associate with the disease. Applied to diverse cohorts, MintTea captures modules with high predictive power, significant cross-omic correlations, and alignment with known microbiome-disease associations. For example, analyzing samples from a metabolic syndrome study, MintTea identifies a module with serum glutamate- and TCA cycle-related metabolites, along with bacterial species linked to insulin resistance. In another dataset, MintTea identifies a module associated with late-stage colorectal cancer, including Peptostreptococcus and Gemella species and fecal amino acids, in line with these species' metabolic activity and their coordinated gradual increase with cancer development. This work demonstrates the potential of advanced integration methods in generating systems-level, multifaceted hypotheses underlying microbiome-disease interactions.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Multiomics , Microbiota/genetics , Bacteria/genetics , Gastrointestinal Microbiome/genetics
2.
bioRxiv ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-37461534

ABSTRACT

The human gut microbiome is a complex ecosystem with profound implications for health and disease. This recognition has led to a surge in multi-omic microbiome studies, employing various molecular assays to elucidate the microbiome's role in diseases across multiple functional layers. However, despite the clear value of these multi-omic datasets, rigorous integrative analysis of such data poses significant challenges, hindering a comprehensive understanding of microbiome-disease interactions. Perhaps most notably, multiple approaches, including univariate and multivariate analyses, as well as machine learning, have been applied to such data to identify disease-associated markers, namely, specific features (e.g., species, pathways, metabolites) that are significantly altered in disease state. These methods, however, often yield extensive lists of features associated with the disease without effectively capturing the multi-layered structure of multi-omic data or offering clear, interpretable hypotheses about underlying microbiome-disease mechanisms. Here, we address this challenge by introducing MintTea - an intermediate integration-based method for analyzing multi-omic microbiome data. MintTea combines a canonical correlation analysis (CCA) extension, consensus analysis, and an evaluation protocol to robustly identify disease-associated multi-omic modules. Each such module consists of a set of features from the various omics that both shift in concord, and collectively associate with the disease. Applying MintTea to diverse case-control cohorts with multi-omic data, we show that this framework is able to capture modules with high predictive power for disease, significant cross-omic correlations, and alignment with known microbiome-disease associations. For example, analyzing samples from a metabolic syndrome (MS) study, we found a MS-associated module comprising of a highly correlated cluster of serum glutamate- and TCA cycle-related metabolites, as well as bacterial species previously implicated in insulin resistance. In another cohort, we identified a module associated with late-stage colorectal cancer, featuring Peptostreptococcus and Gemella species and several fecal amino acids, in agreement with these species' reported role in the metabolism of these amino acids and their coordinated increase in abundance during disease development. Finally, comparing modules identified in different datasets, we detected multiple significant overlaps, suggesting common interactions between microbiome features. Combined, this work serves as a proof of concept for the potential benefits of advanced integration methods in generating integrated multi-omic hypotheses underlying microbiome-disease interactions and a promising avenue for researchers seeking systems-level insights into coherent mechanisms governing microbiome-related diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...