Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ISA Trans ; 114: 171-190, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33422331

ABSTRACT

This paper proposes an adaptive and robust adaptive control strategy based on type-2 fuzzy neural network (T2FNN) for tracking the desired trajectories of a quadrotor. The designed methods can control both the position and the orientation of a quadrotor. Contrary to common sliding mode controllers (SMCs), the robust adaptive trajectory tracking scheme presented here is based on SMC with exponential reaching law; which helps reduce the phenomenon of chattering. Moreover, parameters including the gains of sliding surfaces, are optimized by cuckoo optimization algorithm (COA), and the results are compared with those obtained by genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO). The designed methods in this study are called adaptive T2FNN controller and the exponential SMC (ESMC)-T2FNN. The law for updating the T2FNN is obtained online by using the Lyapunov stability theory. Considering undesired factors such as uncertainties, external disturbances and control signal saturation, the results of our controllers are compared with those of the adaptive type-1 fuzzy neural network controller (T1FNN) and ESMC-T1FNN. The extensive simulations demonstrate the effectiveness of the proposed COA-based ESMC-AT2FNN approach compared to the other tested techniques (i.e. GA, PSO and ACO) in terms of the improved transient and steady-state trajectory-tracking performance. The mean and standard deviation values concerning the COA are obtained through statistical analyses at 0.00006173 and 0.000092, respectively. This paper also examines the complexity of COA in optimizing the trajectory tracking control of quadrotor and investigates the effects of COA parameters on optimization results. The stable performance of the cuckoo algorithm is demonstrated by varying its parameters and analyzing the obtained results. These results also show the convergence of COA for the considered problem.

2.
ISA Trans ; 100: 454-468, 2020 May.
Article in English | MEDLINE | ID: mdl-31916988

ABSTRACT

In this paper, we present neuro-fuzzy cognitive map (NFCM) to control a non-holonomic wheeled mobile robot, for both the kinematic control and the dynamic control. For this purpose, the rules for updating the parameters of NFCM used in online training have been extracted. Also, the convergence of the presented approach has been confirmed by means of Lyapunov method. To evaluate the strength and robustness of the proposed model, it has been tested in tracking different circular and square paths. Experimental results indicate that despite the presence of disturbances, the changes of system parameters, and the existence of non-holonomic constraints, our robot has been able to follow challenging paths (e.g. square-shape trajectories) successfully.

3.
ISA Trans ; 60: 128-142, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26678850

ABSTRACT

By applying an image-based visual servoing (IBVS) method, the intelligent image-based controlling of a quadrotor type unmanned aerial vehicle (UAV) tracking a moving target is studied in this paper. A fuzzy cognitive map (FCM) is a soft computing method which is classified as a fuzzy neural system and exploits the main aspects of fuzzy logic and neural network systems; so it seems to be a suitable choice for implementing a vision-based intelligent technique. An FCM has been employed in implementing an IBVS scheme on a quadrotor UAV, so that the UAV can track a moving target on the ground. For this purpose, by properly combining the perspective image moments, some features with the desired characteristics for controlling the translational and yaw motions of a UAV have been presented. In designing a vision-based control method for a UAV quadrotor, there are some challenges, including the target mobility and not knowing the height of UAV above the target. Also, no sensor has been installed on the moving object and the changes of its yaw angle are not available. Despite all the stated challenges, the proposed method, which uses an FCM in controlling the translational motion and the yaw rotation of a UAV, adequately enables the quadrotor to follow the moving target. The simulation results for different paths show the satisfactory performance of the designed controller.

4.
ISA Trans ; 59: 290-302, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26521725

ABSTRACT

This paper aims to use a visual-based control mechanism to control a quadrotor type aerial robot which is in pursuit of a moving target. The nonlinear nature of a quadrotor, on the one hand, and the difficulty of obtaining an exact model for it, on the other hand, constitute two serious challenges in designing a controller for this UAV. A potential solution for such problems is the use of intelligent control methods such as those that rely on artificial neural networks and other similar approaches. In addition to the two mentioned problems, another problem that emerges due to the moving nature of a target is the uncertainty that exists in the target image. By employing an artificial neural network with a Radial Basis Function (RBF) an indirect adaptive neural controller has been designed for a quadrotor robot in search of a moving target. The results of the simulation for different paths show that the quadrotor has efficiently tracked the moving target.


Subject(s)
Neural Networks, Computer , Robotics , Vision, Ocular , Algorithms , Artificial Intelligence , Computer Simulation , Equipment Design , Image Processing, Computer-Assisted , Nonlinear Dynamics , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...