Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 11696, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38777814

ABSTRACT

Epidemic modeling is essential in understanding the spread of infectious diseases like COVID-19 and devising effective intervention strategies to control them. Recently, network-based disease models have integrated traditional compartment-based modeling with real-world contact graphs and shown promising results. However, in an ongoing epidemic, future contact network patterns are not observed yet. To address this, we use aggregated static networks to approximate future contacts for disease modeling. The standard method in the literature concatenates all edges from a dynamic graph into one collapsed graph, called the full static graph. However, the full static graph often leads to severe overestimation of key epidemic characteristics. Therefore, we propose two novel static network approximation methods, DegMST and EdgeMST, designed to preserve the sparsity of real world contact network while remaining connected. DegMST and EdgeMST use the frequency of temporal edges and the node degrees respectively to preserve sparsity. Our analysis show that our models more closely resemble the network characteristics of the dynamic graph compared to the full static ones. Moreover, our analysis on seven real-world contact networks suggests EdgeMST yield more accurate estimations of disease dynamics for epidemic forecasting when compared to the standard full static method.


Subject(s)
COVID-19 , Epidemics , Forecasting , Humans , COVID-19/epidemiology , COVID-19/transmission , COVID-19/prevention & control , Forecasting/methods , SARS-CoV-2/isolation & purification , Contact Tracing/methods , Algorithms , Epidemiological Models
2.
Adv Sci (Weinh) ; 9(33): e2202883, 2022 11.
Article in English | MEDLINE | ID: mdl-36253119

ABSTRACT

Using multistable mechanical metamaterials to develop deployable structures, electrical devices, and mechanical memories raises two unanswered questions. First, can mechanical instability be programmed to design sensors and memory devices? Second, how can mechanical properties be tuned at the post-fabrication stage via external stimuli? Answering these questions requires a thorough understanding of the snapping sequences and variations of the elastic energy in multistable metamaterials. The mechanics of deformation sequences and continuous force/energy-displacement curves are comprehensively unveiled here. A 1D array, that is chain, of bistable cells is studied to explore instability-induced energy release and snapping sequences under one external mechanical stimulus. This method offers an insight into the programmability of multistable chains, which is exploited to fabricate a mechanical sensor/memory with sampling (analog to digital-A/D) and data reconstruction (digital to analog-D/A) functionalities operating based on the correlation between the deformation sequence and the mechanical input. The findings offer a new paradigm for developing programmable high-capacity read-write mechanical memories regardless of thei size scale. Furthermore, exotic mechanical properties can be tuned by harnessing the attained programmability of multistable chains. In this respect, a transversely multistable mechanical metamaterial with tensegrity-like bistable cells is designed to showcase the tunability of chirality.

SELECTION OF CITATIONS
SEARCH DETAIL