Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 11): 1072-1075, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37936851

ABSTRACT

The structural parameters of yttrium chromium tetra-boride YCrB4 were refined based on single-crystal X-ray diffraction data. YCrB4 is ortho-rhom-bic, having a space group of type Pbam (No. 55) and with lattice parameters of a = 5.9425 (2), b = 11.4831 (4), c = 3.4643 (1) Å. The Y and Cr atoms are located at Wyckoff 4h sites (x, y, 0) and B atoms at the Wyckoff 4g sites (x, y, 1/2). The first structural investigation of YCrB4 was performed using a single crystalline sample [Kuz'ma, (1970 ▸). Kristallografiya. 15, 372-374]. The present study successfully refined all the positional and atomic displacement parameters of the Y, Cr, and B atoms.

2.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 1): 76-79, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35079429

ABSTRACT

The crystal structures of the rare-earth (RE) trirhodium diborides praseo-dymium trirhodium diboride, PrRh3B2, neodymium trirhodium diboride, NdRh3B2, and samarium trirhodium diboride, SmRh3B2, were refined on the basis of single-crystal X-ray diffraction data. The crystal chemistry of RERh3B2 (RE: Pr, Nd, and Sm) compounds has previously been analyzed mainly on the basis of powder samples [Ku et al. (1980 ▸). Solid State Commun. 35, 91-96], and no structural investigation by single-crystal X-ray diffraction has been reported so far. The crystal structures of the three hexa-gonal RERh3B2 compounds are isotypic with that of CeRh3B2; RE, Rh and B sites are situated on special positions with site symmetry 6/mmm (Wyckoff position 1a), mmm (3g) and m2 (2c), respectively. In comparison with the previous powder X-ray study of hexa-gonal RERh3B2, the present redetermination against single-crystal X-ray data has allowed for the modeling of all atoms with anisotropic displacement parameters (ADPs). The ADPs of the Rh atom in each of the structures result in an elongated displacement ellipsoid in the direction of the stacking of the Rh kagomé-type layer. The features of obtained ADPs of atoms are discussed in relation to RERh3B2-type and analogous structures.

3.
Sci Rep ; 10(1): 8914, 2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32488132

ABSTRACT

YxAlyB14 ceramics are of high interest as high temperature thermoelectric materials with excellent p, n control. In this study, direct synthesis of dense polycrystalline YxAlyB14 (x ~0.64, 0.52 ≤ y ≤ 0.67) ceramics was successfully carried out by spark plasma sintering using commercially available precursors. YB4, AlB2 and B powders were reactively sintered with an additive AlF3 at 1773 K for 5-60 min in reduced Ar atmosphere. The sinterability was remarkably enhanced by liquid phase sintering comparing to conventional synthesis techniques. Phase composition analysis by X-ray diffraction showed that main peaks belong to YxAlyB14 with the MgAlB14 structure type and no peaks of AlF3 were detected. The thermoelectric behavior was changed from p-type to n-type with increasing Al occupancy. Power factor and ZT values measured in this study were found to be in the same range as the best values previously reported. This original synthesis process is found to be less precursor-consuming as compared to previous synthesis processes, and strikingly, less time-consuming, as the synthesis time, is shortened from 8 h to 5 min for p-type and to 1 h for n-type. The total process time is shortened from ≥3 days to ~4-5 h. This discovery opens the door for more accessible synthesis of complex borides.

4.
Sci Adv ; 3(8): e1700294, 2017 08.
Article in English | MEDLINE | ID: mdl-28835917

ABSTRACT

Local structures around impurities in solids provide important information for understanding the mechanisms of material functions, because most of them are controlled by dopants. For this purpose, the x-ray absorption fine structure method, which provides radial distribution functions around specific elements, is most widely used. However, a similar method using neutron techniques has not yet been developed. If one can establish a method of local structural analysis with neutrons, then a new frontier of materials science can be explored owing to the specific nature of neutron scattering-that is, its high sensitivity to light elements and magnetic moments. Multiple-wavelength neutron holography using the time-of-flight technique with pulsed neutrons has great potential to realize this. We demonstrated multiple-wavelength neutron holography using a Eu-doped CaF2 single crystal and obtained a clear three-dimensional atomic image around trivalent Eu substituted for divalent Ca, revealing an interesting feature of the local structure that allows it to maintain charge neutrality. The new holography technique is expected to provide new information on local structures using the neutron technique.

5.
J Nanosci Nanotechnol ; 12(2): 1530-4, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22629994

ABSTRACT

Unique Ni compound nanocrystals were successfully grown on carbon nanotubes (CNTs) by cooling a mixed chloride flux. Cup-stacked CNTs (CSCNTs) were used as the nanocarbon materials because of their structural features. The grown nanocrystals had a nanosheet structure, which was densely assembled and had a ribbon-like morphology. Therefore, the nanocrystal/CSCNT composites were expected to have a highly active surface area for the catalyst composites. The selected area electron diffraction pattern and the related radial intensity profiles indicated that the grown nanocrystals were Ni(OH)2. When the pristine CSCNTs were used as a starting material, the formation efficiency of the nanocrystal/CSCNT composites decreased because the pristine CSCNTs were not dispersed in the KCl-LiCl flux. Therefore, functionalization of the CSCNTs was carried out with VUV light irradiation. The dispersibility of the VUV light-treated CSCNTs increased in the KCl-LiCl flux in comparison with the pristine CSCNTs because oxygen-containing functional groups, such as -COOH and -CO, were introduced onto the surfaces of the CSCNTs.

6.
J Nanosci Nanotechnol ; 11(7): 6335-40, 2011 Jul.
Article in English | MEDLINE | ID: mdl-22121711

ABSTRACT

Carbon nanotubes (CNTs) are promising catalyst supports for fuel cell applications. Metal oxide/CNT nanocomposites are also being studied for dye-sensitized solar-cell, photocatalyst, and sensor applications. The fabrication of nanocomposites consisting of highly crystalline NbOx nanotubes and cup-stacked carbon nanotubes (CSCNTs) is reported herein. The CSCNTs were selected for the carbon materials because of their distinctive structure. The CSCNTs were photochemically treated with vacuum ultraviolet light, which increased the amount of oxygen-containing functional groups therein. NbOx nanotubes with no defects were successfully prepared with the chemical treatment of highly crystalline, layered, flux-grown K4Nb6O17 crystals. First, K4Nb6O17 crystals were grown from a KCl flux at a holding temperature of 800 degrees C. Next, NbOx nanosheets were prepared from the layered K4Nb6O17 crystals via a two-step exfoliation process, which consists of proton exchange in an acid solution and intercalation of the tetrabutylammonium ions. The NbOx nanosheets were rolled up into nanotubes with diameters of about 20 nm and lengths of 100-500 nm on the surfaces of the CSCNTs; thus, unique and complex NbOx/CSCNT nanocomposites were successfully fabricated.

7.
Chem Commun (Camb) ; 46(13): 2295-7, 2010 Apr 07.
Article in English | MEDLINE | ID: mdl-20234937

ABSTRACT

A dry process using VUV light was confirmed as a novel technique to attach functional groups onto cup-stacked carbon nanotubes and to develop their isolation in a water system without the use of dispersing agents.

8.
Dalton Trans ; 39(4): 1027-30, 2010 Jan 28.
Article in English | MEDLINE | ID: mdl-20066187

ABSTRACT

Transition-metal (Mo, Mn, Fe, Rh, Ti, Cu, Zn) doping was carried out on the borosilicide compound REB(44)Si(2) (RE = rare earth). REB(44)Si(2) compounds exhibit Seebeck coefficients greater than 200 microV K(-1) at high temperatures and unlike most compounds, the figure of merit shows a steep increase at T > 1000 K making them promising high-temperature thermoelectric materials. Although zinc itself does not remain in the final product, zinc doping was found to improve the crystal quality, which has been a long-standing problem for the borosilicides. As a result, a significant increase of the thermoelectric power factor by more than 30% was achieved.

SELECTION OF CITATIONS
SEARCH DETAIL
...