Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Dose Response ; 19(4): 15593258211052420, 2021.
Article in English | MEDLINE | ID: mdl-34867125

ABSTRACT

Spherical selenium-oxide and copper-oxide nanoparticles (SeO-NP with mean diameter 51 ± 14 nm and CuO-NP with mean diameter 21 ± 4 nm) were found to be cytotoxic for human fibroblast-like cells in vitro, as judged by decreased ATP-dependent luminescence. Compared with SeO-NP, CuO-NP produced a somewhat stronger effect of this kind. Along with cell hypertrophy developing in response to certain doses of SeO-NP and CuO-NP, our experiment also revealed doses causing a decrease in cell and cell-nucleus sizes. We observed both monotonic and different variants of nonmonotonic dose-response relationship. For the latter, we have succeeded in constructing adequate mathematical expressions based on the generalized hormesis paradigm that we had considered previously in respect of CdS-NP and PbS-NP cytotoxicity for cardiomyocites. It was demonstrated as well that combined toxicity of SeO-NP and CuO-NP is of different types depending on the outcome.

2.
Int J Mol Sci ; 22(7)2021 Mar 27.
Article in English | MEDLINE | ID: mdl-33801669

ABSTRACT

Subchronic intoxication was induced in outbred male rats by repeated intraperitoneal injections with lead oxide (PbO) and/or cadmium oxide (CdO) nanoparticles (NPs) 3 times a week during 6 weeks for the purpose of examining its effects on the contractile characteristics of isolated right ventricle trabeculae and papillary muscles in isometric and afterload contractions. Isolated and combined intoxication with these NPs was observed to reduce the mechanical work produced by both types of myocardial preparation. Using the in vitro motility assay, we showed that the sliding velocity of regulated thin filaments drops under both isolated and combined intoxication with CdO-NP and PbO-NP. These results correlate with a shift in the expression of myosin heavy chain (MHC) isoforms towards slowly cycling ß-MHC. The type of CdO-NP + PbO-NP combined cardiotoxicity depends on the effect of the toxic impact, the extent of this effect, the ratio of toxicant doses, and the degree of stretching of cardiomyocytes and muscle type studied. Some indices of combined Pb-NP and CdO-NP cardiotoxicity and general toxicity (genotoxicity included) became fully or partly normalized if intoxication developed against background administration of a bioprotective complex.


Subject(s)
Cadmium Compounds/toxicity , Heart/drug effects , Lead/toxicity , Metal Nanoparticles/toxicity , Nanotechnology/methods , Oxides/toxicity , Papillary Muscles/drug effects , Animals , Cardiotoxicity , DNA Fragmentation , Injections, Intraperitoneal , Male , Myocardium/metabolism , Myocardium/pathology , Myosin Heavy Chains , Myosins/chemistry , Protein Isoforms , Rats , Toxicity Tests, Subchronic
3.
Dose Response ; 19(1): 1559325820982163, 2021.
Article in English | MEDLINE | ID: mdl-33628148

ABSTRACT

In vitro toxicological experiments were performed on an endothelial cell line exposed to different doses of spherical nanoparticles of cadmium and/or of lead sulfides with mean diameter 37 ± 5 nm and 24 ± 4 nm, respectively. Toxic effects were estimated by Luminescent Cell Viability Assay, endothelin-1 concentration and cell size determination. Some dose-response relationships were typically monotonic (well approximated with hyperbolic function) while others were bi- or even 3-phasic and could be described within the expanded hormesis paradigm. The combined toxicity type variated depending on the effect it was assessed by.

4.
Nanotoxicology ; 15(2): 205-222, 2021 03.
Article in English | MEDLINE | ID: mdl-33186499

ABSTRACT

Moderate subchronic intoxication was induced in rats by repeated intraperitoneal injections of PbO (49.6 ± 16.0 nm) and/or CdO (57.0 ± 13.0 nm) nanoparticles (NP) three times a week during 6 weeks. In particular, there was a reduction in arterial blood pressure and in blood concentrations of a number of factors controlling vasoconstriction and vasodilation, particularly of endothelin 1 (ET-1). This toxic effect was attenuated with a bioprotective complex administered in the background. The study confirmed as well that the combined binary action typology varies depending on which effect it is estimated by.


Subject(s)
Cadmium/toxicity , Cardiovascular System/drug effects , Lead/toxicity , Nanoparticles/toxicity , Animals , Dose-Response Relationship, Drug , Drug Synergism , Injections, Intraperitoneal , Male , Organ Specificity , Rats , Toxicity Tests, Subchronic
5.
Nanotoxicology ; 14(6): 788-806, 2020 08.
Article in English | MEDLINE | ID: mdl-32396411

ABSTRACT

Over the past few years, the Ekaterinburg (Russia) interdisciplinary nanotoxicological research team has carried out a series of investigations using different in vivo and in vitro experimental models in order to elucidate the cytotoxicity and organ-systemic and organism-level toxicity of lead-containing nanoparticles (NP) acting separately or in combinations with some other metallic NPs. The authors claim that their many-sided experience in this field is unique and that some of their important results have been obtained for the first time. This paper is an overview of the team's previous publications in different journals. It is suggested to be used as a compact scientific base for assessing health risks associated not only with the production and usage of engineered lead-containing NPs but also with their inevitable by-production as toxic air pollutants in the metallurgy of lead, copper or their alloys and in soldering operations.


Subject(s)
Copper/toxicity , Lead/toxicity , Metal Nanoparticles/toxicity , Nanoparticles/toxicity , Nanotechnology , Animals , Cell Line , Fibroblasts/drug effects , Humans , Materials Testing , Rats , Russia , Toxicity Tests
6.
Dose Response ; 18(1): 1559325820914180, 2020.
Article in English | MEDLINE | ID: mdl-32231470

ABSTRACT

Spherical nanoparticles (NPs) of cadmium and lead sulfides (diameter 37 ± 5 and 24 ± 4 nm, respectively) have been found to be cytotoxic for HL-1 cardiomyocytes as evidenced by decrease in adenosine triphosphate-dependent luminescence. Cadmium sulfide (CdS)-NPs were discovered to produce a much greater cytotoxic impact than lead sulphide (PbS)-NP. Given the same dose range, CdS-NP reduced the number of calcium spikes. A similar effect was observed for small doses of PbS-NP. In addition to cell hypertrophy under the impact of certain doses of CdS-NP and PbS-NP, doses causing cardiomyocyte size reduction were identified. For these 3 outcomes, we obtained both monotonic "dose-response" functions (well approximated by the hyperbolic function) and different variants of non-monotonic ones for which we found adequate mathematical expressions by modifying certain models of hormesis available in the literature. Data analysis using a response surface linear model with a cross-term provided new support to the previously established postulate that a diversity of types of joint action characteristic of one and the same pair of damaging agents is one of the important assertions of the general theory of combined toxicity.

7.
Int J Mol Sci ; 21(3)2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31973040

ABSTRACT

Outbred female rats were exposed to inhalation of lead oxide nanoparticle aerosol produced right then and there at a concentration of 1.30 ± 0.10 mg/m3 during 5 days for 4 h a day in a nose-only setup. A control group of rats were sham-exposed in parallel under similar conditions. Even this short-time exposure of a relatively low level was associated with nanoparticles retention demonstrable by transmission electron microscopy in the lungs and the olfactory brain. Some impairments were found in the organism's status in the exposed group, some of which might be considered lead-specific toxicological outcomes (in particular, increase in reticulocytes proportion, in δ-aminolevulinic acid (δ-ALA) urine excretion, and the arterial hypertension's development).


Subject(s)
Inhalation Exposure , Lead/toxicity , Nanoparticles/toxicity , Oxides/toxicity , Aerosols , Aminolevulinic Acid/urine , Animals , Bronchoalveolar Lavage Fluid/chemistry , Female , Lead/administration & dosage , Lung/pathology , Microscopy, Electron, Transmission , Nanoparticles/administration & dosage , Oxides/administration & dosage , Particle Size , Pulmonary Arterial Hypertension , Rats
8.
Food Chem Toxicol ; 133: 110753, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31400477

ABSTRACT

Isolated and combined damaging effects of PbO and CuO nanoparticles were estimated on an established line of human fibroblasts by a decrease in: (a) the cellular dehydrogenase activity (MTT Assay), (b) the ATP content (Luminescent Cell Viability Assay), (c) the cellular proliferation, viability, spreading, and attachment to substrate evaluated integrally by continuous impedance-based measurement of the Normalized Cell Index. Using all these indices, we demonstrate an explicit dependence of cell damage on the concentrations of both metal oxide nanoparticle (MeO-NP) species. This dependence is adequately approximated with a hyperbolic function. At equal exposure levels, PbO-NP and CuO-NP demonstrate quantitatively similar cytotoxicities. The same was observed previously for some non-specific in vivo toxicity measures. The combined in vitro cytotoxicity has also been described mathematically using the Response Surface Methodology and found to be represented by various types, thus corroborating, in this respect also, the findings of a previous animal experiment with the same MeO-NPs.


Subject(s)
Copper/toxicity , Lead/toxicity , Metal Nanoparticles/toxicity , Oxides/toxicity , Cell Line , Dose-Response Relationship, Drug , Humans , Models, Biological
9.
Int J Mol Sci ; 20(7)2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30974874

ABSTRACT

Rats were exposed to nickel oxide nanoparticles (NiO-NP) inhalation at 0.23 ± 0.01 mg/m³ for 4 h a day 5 times a week for up to 10 months. The rat organism responded to this impact with changes in cytological and some biochemical characteristics of the bronchoalveolar lavage fluid along with a paradoxically little pronounced pulmonary pathology associated with a rather low chronic retention of nanoparticles in the lungs. There were various manifestations of systemic toxicity, including damage to the liver and kidneys; a likely allergic syndrome as indicated by some cytological signs; transient stimulation of erythropoiesis; and penetration of nickel into the brain from the nasal mucous membrane along the olfactory pathway. Against a picture of mild to moderate chronic toxicity of nickel, its in vivo genotoxic effect assessed by the degree of DNA fragmentation in nucleated blood cells (the RAPD test) was pronounced, tending to increasing with the length of the exposure period. When rats were given orally, in parallel with the toxic exposure, a set of innocuous substances with differing mechanisms of expected bioprotective action, the genotoxic effect of NiO-NPs was found to be substantially attenuated.


Subject(s)
Inhalation Exposure/adverse effects , Nanoparticles/toxicity , Nickel/toxicity , Animals , Bronchoalveolar Lavage Fluid , Liver/pathology , Liver/ultrastructure , Lung/metabolism , Lung/ultrastructure , Male , Organ Specificity , Rats , Time Factors
10.
Int J Mol Sci ; 19(3)2018 Mar 13.
Article in English | MEDLINE | ID: mdl-29534019

ABSTRACT

Stable suspensions of metal/metalloid oxide nanoparticles (MeO-NPs) obtained by laser ablation of 99.99% pure elemental aluminum, titanium or silicon under a layer of deionized water were used separately, or in three binary combinations, or in a ternary combination to induce subchronic intoxications in rats. To this end, the MeO-NPs were repeatedly injected intraperitoneally (i.p.) 18 times during 6 weeks before measuring a large number of functional, biochemical, morphological and cytological indices for the organism's status. In many respects, the Al2O3-NP was found to be the most toxic species alone and the most dangerous component of the combinations studied. Mathematical modeling with the help of the Response Surface Methodology showed that, as well as in the case of any other binary toxic combinations previously investigated by us, the organism's response to a simultaneous exposure to any two of the MeO-NP species under study was characterized by a complex interaction between all possible types of combined toxicity (additivity, subadditivity or superadditivity of unidirectional action and different variants of opposite effects) depending on which outcome this type was estimated for and on effect and dose levels. With any third MeO-NP species acting in the background, the type of combined toxicity displayed by the other two remained virtually the same or changed significantly, becoming either more or less unfavorable. Various harmful effects produced by the (Al2O3-NP + TiO2-NP + SiO2-NP)-combination, including its genotoxicity, were substantially attenuated by giving the rats per os during the entire exposure period a complex of innocuous bioactive substances expected to increase the organism's antitoxic resistance.


Subject(s)
Metal Nanoparticles/toxicity , Toxicity Tests, Subchronic , Aluminum/chemistry , Animals , Injections, Intraperitoneal , Male , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Pectins/administration & dosage , Protective Agents/administration & dosage , Rats , Silicon/chemistry , Titanium/chemistry , Vitamins/administration & dosage
12.
Food Chem Toxicol ; 109(Pt 1): 393-404, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28935498

ABSTRACT

Comparative and combined damaging effects of NiO and Mn3O4 nanoparticles were estimated on cultures of several established human cell lines. The cytotoxicity indices used were: (a) reduction in cellular dehydrogenase activity, (b) decrease in the ATP-content, (c) for SH-SY5Y cells also decrease in the tyrosine hydroxylase content. The combined cytotoxicity was modeled using the Response Surface Methodology. When assessing the stability of metal oxide nanoparticles (MeO-NPs) in cultural media used by us, we found that the addition of the fetal bovine serum (FBS) to them renders NiO-NPs and, to even greater extent, Mn3O4-NPs exponentially slow soluble while without FBS their dissolution was virtually undetectable. At the same time, sedimentation of these MeO-NPs noticeably slowed down in the presence of the same FBS. We have found dependence of cell damage on concentrations of MeO-NPs and higher cytotoxicity of Mn3O4-NP compared with NiO-NP. Thus, comparative assessment of the NPs unspecific toxicity obtained in our animal experiments was reproduced by the "in vitro" tests. However, with respect to manganese-specific brain damage "in vivo" discovered previously, present experiments on neurons "in vitro" showed only a certain enhancing effect of Mn3O4-NP on the action of NiO-NP, but the role of NiO-NP in the combination prevailed.


Subject(s)
Metal Nanoparticles/toxicity , Nickel/toxicity , Oxides/toxicity , Cell Line , Humans , Manganese Compounds/chemistry , Metal Nanoparticles/chemistry , Nickel/chemistry , Oxidation-Reduction , Oxides/chemistry
13.
Future Cardiol ; 13(4): 345-363, 2017 07.
Article in English | MEDLINE | ID: mdl-28644056

ABSTRACT

AIM: The safety options in nanomedicine raise an issue of the optimal niche at the real-world clinical practice. METHODS: This is an observational prospective cohort analysis of the 5-year clinical outcomes at the intention-to-treat population (nano vs ferro vs stenting; n = 180) of NANOM first-in-man trial (NCT01270139). RESULTS: Mortality (6 vs 9 vs 10 cases of cardiac death in groups, p < 0.05), major adverse cardiovascular events (14.3 vs 20.9 vs 22.9%, p = 0.04), late thrombosis (2 vs 4 vs 6, p < 0.05) and target lesion revascularization (3.8 vs 4.8 vs 5.7%, p = 0.04) were significantly higher in ferro group and stent control at 60 months. CONCLUSION: NANOM first-in-man trial demonstrates high safety with better rate of mortality, major adverse cardiovascular events and target lesion revascularization at the long-term follow-up if compare with stent XIENCE V.


Subject(s)
Atherosclerosis/drug therapy , Coronary Artery Disease/drug therapy , Nanoparticles/therapeutic use , Atherosclerosis/mortality , Cardiovascular Diseases/etiology , Coronary Artery Disease/mortality , Drug-Eluting Stents , Female , Humans , Intention to Treat Analysis , Male , Middle Aged , Nanoparticles/adverse effects , Prospective Studies , Time Factors , Treatment Outcome
14.
Toxicology ; 384: 59-68, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28450064

ABSTRACT

While engineered SiO2 nanoparticle toxicity is being widely investigated, mostly on cell lines or in acute animal experiments, the practical importance of as well as the theoretical interest in industrial condensation aerosols with a high SiO2 particle content seems to be neglected. That is why, to the best of our knowledge, long-term inhalation exposure to nano-SiO2 has not been undertaken in experimental nanotoxicology studies. To correct this data gap, female white rats were exposed for 3 or 6 months 5 times a week, 4h a day to an aerosol containing predominantly submicron (nanoscale included) particles of amorphous silica at an exposure concentration of 2.6±0.6 or 10.6±2.1mg/m3. This material had been collected from the flue-gas ducts of electric ore smelting furnaces that were producing elemental silicon, subsequently sieved through a<2µm screen and redispersed to feed a computerized "nose only" inhalation system. In an auxiliary experiment using a single-shot intratracheal instillation of these particles, it was shown that they induced a pulmonary cell response comparable with that of a highly cytotoxic and fibrogenic quartz powder, namely DQ12. However, in long-term inhalation tests, the aerosol studied proved to be of very low systemic toxicity and negligible pulmonary fibrogenicity. This paradox may be explained by a low SiO2 retention in the lungs and other organs due to the relatively high solubility of these nanoparticles. nasal penetration of nanoparticles into the brain as well as their genotoxic action were found in the same experiment, results that make one give a cautious overall assessment of this aerosol as an occupational or environmental hazard.


Subject(s)
Nanoparticles/toxicity , Silicon Dioxide/toxicity , Administration, Inhalation , Aerosols , Animals , Bronchoalveolar Lavage Fluid/cytology , Cell Count , Female , Lung/drug effects , Lung/metabolism , Lung/pathology , Lymph Nodes/metabolism , Microscopy, Electron, Scanning , Nanoparticles/ultrastructure , Particle Size , Rats , Silicon Dioxide/pharmacokinetics
15.
Toxicology ; 380: 72-93, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28212817

ABSTRACT

Stable suspensions of metal oxide nanoparticles (Me-NPs) obtained by laser ablation of 99.99% pure copper, zinc or lead under a layer of deionized water were used separately, in three binary combinations and a triple combination in two independent experiments on rats. In one of the experiments the rats were instilled with Me-NPs intratracheally (i.t.) (for performing a broncho-alveolar lavage in 24h to estimate the cytological and biochemical indices of the response of the lower airways), while in the other, Me-NPs were repeatedly injected intraperitoneally (i.p.) 18 times during 6 weeks (for estimating the accumulation of corresponding metals in the blood and their excretion with urine and feces and for assessing subchronic intoxication by a large number of functional and morphological indices). Mathematical description of the results from both experiments with the help of the Response Surface Methodology has shown that, as well as in the case of any other binary toxic combinations previously investigated by us, the response of the organism to a simultaneous exposure to any two of the Me-NPs under study is characterized by complex interactions between all possible types of combined toxicity (additivity, subadditivity or superadditivity of unidirectional action and different variants of opposite effects) depending on which effect it is estimated for as well as on the levels of the effect and dose. With any third Me-NP species acting in the background, the type of combined toxicity displayed by the other two may change significantly (as in the earlier described case of a triple combination of soluble metal salts). It is shown that various harmful effects produced by CuO-NP+ZnO-NP+PbO-NP combination may be substantially attenuated by giving rats per os a complex of innocuous bioactive substances theoretically expected to provide a protective integral and/or metal-specific effect during one month before i.t. instillation or during the entire period of i.p. injections.


Subject(s)
Copper/toxicity , Lead/toxicity , Metal Nanoparticles/toxicity , Oxides/toxicity , Zinc Oxide/toxicity , Administration, Oral , Animals , Disease Models, Animal , Fatty Acids, Omega-3/pharmacology , Injections, Intraperitoneal , Lung/drug effects , Lung/pathology , Male , Metal Nanoparticles/chemistry , Micronutrients/pharmacology , Models, Theoretical , Multivariate Analysis , Particle Size , Pectins/pharmacology , Protective Agents/pharmacology , Rats , Toxicity Tests, Subchronic
16.
Food Chem Toxicol ; 86: 351-64, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26607108

ABSTRACT

Stable suspensions of NiO and/or Mn3O4 nanoparticles with a mean diameter of 16.7 ± 8.2 nm and 18.4 ± 5.4 nm, respectively, prepared by laser ablation of 99.99% pure metals in de-ionized water were repeatedly injected IP to rats at a dose of 0.50 mg or 0.25 mg 3 times a week up to 18 injections, either separately or in different combinations. Many functional indices as well as histological features of the liver, spleen, kidneys and brain were evaluated for signs of toxicity. The accumulation of Ni and Mn in these organs was measured with the help of AES and EPR methods. Both metallic nanoparticles proved adversely bio-active, but those of Mn3O4 were found to be more noxious in most of the non-specific toxicity manifestations. Moreover, they induced a more marked damaging effect in the neurons of the caudate nucleus and hippocampus which may be considered an experimental correlate of manganese-induced parkinsonism. Mathematical analysis based on the Response Surface Methodology (RSM) revealed a diversity of combined toxicity types depending not only on particular effects these types are assessed for but on their level as well. The prognostic power of the RSM model proved satisfactory.


Subject(s)
Manganese Compounds/chemistry , Metal Nanoparticles/toxicity , Nickel/chemistry , Oxides/chemistry , Animals , Drug Administration Schedule , Drug Therapy, Combination , Manganese Compounds/administration & dosage , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Models, Biological , Nickel/administration & dosage , Nickel/toxicity , Oxides/administration & dosage , Oxides/toxicity , Rats
17.
Int J Mol Sci ; 16(9): 22555-83, 2015 Sep 17.
Article in English | MEDLINE | ID: mdl-26393577

ABSTRACT

Stable suspensions of NiO and Mn3O4 nanoparticles (NPs) with a mean (±s.d.) diameter of 16.7±8.2 and 18.4±5.4 nm, respectively, purposefully prepared by laser ablation of 99.99% pure nickel or manganese in de-ionized water, were repeatedly injected intraperitoneally (IP) to rats at a dose of 2.5 mg/kg 3 times a week up to 18 injections, either alone or in combination. A group of rats was injected with this combination with the background oral administration of a "bio-protective complex" (BPC) comprising pectin, vitamins A, C, E, glutamate, glycine, N-acetylcysteine, selenium, iodide and omega-3 PUFA, this composition having been chosen based on mechanistic considerations and previous experience. After the termination of injections, many functional and biochemical indices and histopathological features (with morphometric assessment) of the liver, spleen, kidneys and brain were evaluated for signs of toxicity. The Ni and Mn content of these organs was measured with the help of the atomic emission and electron paramagnetic resonance spectroscopies. We obtained blood leukocytes for performing the RAPD (Random Amplified Polymorphic DNA) test. Although both metallic NPs proved adversely bio-active in many respects considered in this study, Mn3O4-NPs were somewhat more noxious than NiO-NPs as concerns most of the non-specific toxicity manifestations and they induced more marked damage to neurons in the striatum and the hippocampus, which may be considered an experimental correlate of the manganese-induced Parkinsonism. The comparative solubility of the Mn3O4-NPs and NiO-NPs in a biological medium is discussed as one of the factors underlying the difference in their toxicokinetics and toxicities. The BPC has attenuated both the organ-systemic toxicity and the genotoxicity of Mn3O4-NPs in combination with NiO-NPs.


Subject(s)
Kidney/drug effects , Liver/drug effects , Manganese Compounds/adverse effects , Nanoparticles/adverse effects , Nickel/adverse effects , Oxides/adverse effects , Protective Agents/pharmacology , Spleen/drug effects , Acetylcysteine/pharmacology , Animals , Fatty Acids, Omega-3/pharmacology , Glycine/pharmacology , Iodides/pharmacology , Kidney/pathology , Liver/pathology , Manganese Compounds/administration & dosage , Nanoparticles/administration & dosage , Nickel/administration & dosage , Oxides/administration & dosage , Pectins/pharmacology , Rats , Selenium/pharmacology , Spleen/pathology , Vitamins/pharmacology
18.
Int J Nanomedicine ; 10: 3013-29, 2015.
Article in English | MEDLINE | ID: mdl-25945048

ABSTRACT

The purpose of this paper is to overview and summarize previously published results of our experiments on white rats exposed to either a single intratracheal instillation or repeated intraperitoneal injections of silver, gold, iron oxide, copper oxide, nickel oxide, and manganese oxide nanoparticles (NPs) in stable water suspensions without any chemical additives. Based on these results and some corroborating data of other researchers we maintain that these NPs are much more noxious on both cellular and systemic levels as compared with their 1 µm or even submicron counterparts. However, within the nanometer range the dependence of systemic toxicity on particle size is intricate and non-unique due to complex and often contra-directional relationships between the intrinsic biological aggressiveness of the specific NPs, on the one hand, and complex mechanisms that control their biokinetics, on the other. Our data testify to the high activity of the pulmonary phagocytosis of NPs deposited in airways. This fact suggests that safe levels of exposure to airborne NPs are possible in principle. However, there are no reliable foundations for establishing different permissible exposure levels for particles of different size within the nanometric range. For workroom air, such permissible exposure levels of metallic NP can be proposed at this stage, even if tentatively, based on a sufficiently conservative approach of decreasing approximately tenfold the exposure limits officially established for respective micro-scale industrial aerosols. It was shown that against the background of adequately composed combinations of some bioactive agents (comprising pectin, multivitamin-multimineral preparations, some amino acids, and omega-3 polyunsaturated fatty acid) the systemic toxicity and even genotoxicity of metallic NPs could be markedly attenuated. Therefore we believe that, along with decreasing NP-exposures, enhancing organisms' resistance to their adverse action with the help of such bioprotectors can prove an efficient auxiliary tool of health risk management in occupations connected with them.


Subject(s)
Lung , Metal Nanoparticles , Metals, Heavy , Oxides , Phagocytosis/drug effects , Animals , Lung/drug effects , Lung/metabolism , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Metals, Heavy/chemistry , Metals, Heavy/toxicity , Nanotechnology/methods , Nanotechnology/standards , Oxides/chemistry , Oxides/toxicity , Particle Size , Rats
19.
Int J Mol Sci ; 15(11): 21538-53, 2014 Nov 24.
Article in English | MEDLINE | ID: mdl-25421246

ABSTRACT

We used stable water suspensions of copper oxide particles with mean diameter 20 nm and of particles containing copper oxide and element copper with mean diameter 340 nm to assess the pulmonary phagocytosis response of rats to a single intratracheal instillation of these suspensions using optical, transmission electron, and semi-contact atomic force microscopy and biochemical indices measured in the bronchoalveolar lavage fluid. Although both nano and submicron ultrafine particles were adversely bioactive, the former were found to be more toxic for lungs as compared with the latter while evoking more pronounced defense recruitment of alveolar macrophages and especially of neutrophil leukocytes and more active phagocytosis. Based on our results and literature data, we consider both copper solubilization and direct contact with cellular organelles (mainly, mitochondria) of persistent particles internalized by phagocytes as probable mechanisms of their cytotoxicity.


Subject(s)
Copper/administration & dosage , Lung/drug effects , Nanoparticles/administration & dosage , Animals , Bronchoalveolar Lavage Fluid , Female , Intubation, Intratracheal/methods , Macrophages, Alveolar/drug effects , Neutrophils/drug effects , Particle Size , Phagocytosis/drug effects , Rats , Suspensions/administration & dosage
20.
Int J Mol Sci ; 14(2): 2449-83, 2013 Jan 25.
Article in English | MEDLINE | ID: mdl-23354478

ABSTRACT

Stable suspensions of nanogold (NG) and nanosilver (NS) with mean particle diameter 50 and 49 nm, respectively, were prepared by laser ablation of metals in water. To assess rat's pulmonary phagocytosis response to a single intratracheal instillation of these suspensions, we used optical, transmission electron, and semi-contact atomic force microscopy. NG and NS were also repeatedly injected intraperitoneally into rats at a dose of 10 mg/kg (0.5 mg per mL of deionized water) three times a week, up to 20 injections. A group of rats was thus injected with NS after oral administration of a "bioprotective complex" (BPC) comprised of pectin, multivitamins, some amino acids, calcium, selenium, and omega-3 PUFA. After the termination of the injections, many functional and biochemical indices and histopathological features of the spleen, kidneys and liver were evaluated for signs of toxicity, and accumulation of NG or NS in these organs was measured. From the same rats, we obtained cell suspensions of different tissues for performing the RAPD test. It was demonstrated that, although both nanometals were adversely bioactive in all respects considered in this study, NS was more noxious as compared with NG, and that the BPC tested by us attenuated both the toxicity and genotoxicity of NS.

SELECTION OF CITATIONS
SEARCH DETAIL
...